
Getting out of Jail: Escaping Internet Explorer
Protected Mode

September, 2007

Skywing
Skywing@valhallalegends.com

http://www.nynaeve.net

http://www.nynaeve.net


Abstract

With the introduction of Windows Vista, Microsoft
has added a new form of mandatory access control
to the core operating system. Internally known as
”integrity levels”, this new addition to the security
manager allows security controls to be placed on a
per-process basis. This is different from the tradi-
tional model of per-user security controls used in all
prior versions of Windows NT. In this manner, in-
tegrity levels are essentially a bolt-on to the exist-
ing Windows NT security architecture. While the
idea is theoretically sound, there does exist a great
possibility for implementation errors with respect to
how integrity levels work in practice. Integrity levels
are the core of Internet Explorer Protected Mode, a
new ”low-rights” mode where Internet Explorer runs
without permission to modify most files or registry
keys. This places both Internet Explorer and in-
tegrity levels as a whole at the forefront of the com-
puter security battle with respect to Windows Vista.

1 Introduction

Internet Explorer Protected Mode is a reduced-rights
operational mode of Internet Explorer where the se-
curity manager itself enforces a policy of not allowing
write access to most file system, registry, and other
securable objects by default. This mode does provide
special sandbox file system and registry space that is
permitted to be written to by Internet Explorer when
operating in Protected Mode.

While there exist some fundamental shortcomings of
Protected Mode as it is currently implemented, such
as an inability to protect user data from being read by
a compromised browser process, it has been thought
to be effective at blocking most write access to the
system from a compromised browser. The benefit of
this is that if one is using Internet Explorer and a
buffer overrun occurs within IExplore.exe, the per-
sistent impact should be lessened. For example, in-
stead of having write access to everything accessible

to the user’s account, exploit code would instead be
limited to being able to write to the low integrity sec-
tion of the registry and the low integrity temporary
files directories. This greatly impacts the ability of
malware to persist itself or compromise a computer
beyond just IExplore.exe without some sort of user
interaction (such as persuading a user to launch a
program from an untrusted location with full rights,
or other social engineering attacks).

2 Protected Mode and In-
tegrity Levels

Internally, Protected Mode is implemented by run-
ning IExplore.exe as a low integrity process. With
the default security descriptor that is applied to
most securable objects, low integrity processes may
not generally request access rights that map to
GENERIC WRITE for a particular object. As Internet
Explorer does need to be able to persist some files
and settings, exceptions can (and are) carved out for
low integrity processes in the form of registry keys
and directories with special security descriptors that
grant the ability for low integrity processes to request
write access. Because the IExplore process cannot
write files to a location that would be automatically
used by a higher integrity process, and it cannot re-
quest dangerous access rights to other running pro-
cesses (such as the ability to inject code via request-
ing PROCESS VM WRITE or the like), malware that runs
in the context of a compromised IExplore process is
(theoretically) fairly contained from the rest of the
system.

However, this containment only holds as long as the
system happens to be free of implementation errors.
Alas, but perhaps not unexpectedly, there are in fact
implementation problems in the way the system man-
ages processes running at differing integrity levels
that can be leveraged to break out of the Protected
Mode (or low integrity) jail. To understand these im-
plementation errors, it is first necessary to gain a ba-
sic working understanding of how the new integrity-

1



based security model works in Windows. The in-
tegrity model is key to a number of Windows Vista
features, including UAC (User Account Control).

When a user logs on to a computer in Windows
Vista with UAC enabled, their shell is normally
started as a “medium” integrity process. Integrity
levels are integers and symbolic designations such as
“low”, “medium”, “high”, or “system” are simply
used to indicate certain well-known intermediate val-
ues. Medium integrity is the default integrity level
even for built-in administrators (except the default
“Administrator” account, which is a special case and
is exempted from UAC). Most day to day activity is
intended to be performed at medium integrity; for in-
stance, a word processor program would be expected
to operate at medium integrity, and (theoretically)
games would generally run at medium integrity as
well. Games tend to be rather poorly written in terms
of awareness of the security system, however, so this
tends to not really be the case, at least not without
added help from the operating system. Medium in-
tegrity roughly corresponds to the environment that
a limited user would run as under previous versions
of Windows. That is to say, the user has read and
write access to their own user profile and their own
registry hive, but not write access to the system as a
whole.

Now, when a user launches Internet Explorer, an IEx-
plore.exe process is launched as low integrity. The
default security descriptor for most objects on Win-
dows prevents low integrity processes from gaining
write access to medium integrity securable objects, as
previously mentioned. In reality, the default security
descriptor denies write access to higher integrities,
not just to medium integrity, though in this case the
effect is similar in terms of Internet Explorer. As a
result, the IExplore.exe process cannot write directly
to most locations on the system.

However, Internet Explorer does, in certain cases,
need to gain write to locations outside of the low
integrity (Protected Mode) sandbox. For this task,
Internet Explorer relies on a helper process, known
as ieuser.exe, which runs at medium integrity level.
There is a tightly controlled RPC interface between

ieuser.exe and IExplore.exe that allows Internet Ex-
plorer, running at low integrity, to request that
ieuser.exe display a dialog box asking the user to,
say, choose a save location for a file and then save
said file to disk. This is the mechanism by which one
can save files in their home directory even under Pro-
tected Mode. Because the RPC interface only allows
IExplore.exe to use the RPC interface to request that
a file to be saved, a program cannot directly abuse
the RPC interface to write to arbitrary locations, at
least not without user interaction.

Part of the reason why the RPC interface cannot be
trivially abused is that there also exists some protec-
tion baked into the window manager that prevents
a thread at a lower integrity level from sending cer-
tain, potentially dangerous, messages to threads at a
higher integrity level. This allows ieuser.exe to safely
display user interface on the same desktop as the
IExplore.exe process without malicious code in the
Internet Explorer process simply being able to sim-
ulate fake keystrokes in order to cause it to save a
dangerous file to a dangerous location without user
interaction.

Most programs that are integrity-level aware operate
with the same sort of paradigm that Internet Ex-
plorer does. In such programs, there is typically a
higher integrity broker process that provides a tightly
controlled interface to request that certain actions be
taken, with the consent of the user. For example,
UAC has a broker process (a privileged service) that
is responsible for displaying the consent user inter-
face when the user tries to perform an administrative
task. This operates similar in principal to how Inter-
net Explorer can provide a security barrier through
Protected Mode because the lower privileged process
(the user program) cannot magically elevate itself to
full administrative rights in the UAC case (which
runs a program at high integrity level, as opposed
to the default medium integrity level). Instead, it
could only ask the service to display the consent UI,
which is protected from interference by the program
requesting elevation due to the window manager re-
strictions on sending dangerous messages to a higher
integrity level window.

2



3 Breaking the Broker

If one has been using Windows Vista for some time,
none of the behavior that has just been described
should come across as new. However, there are some
cases that have not yet been discussed which one
might have observed from time to time with Windows
Vista. For example, although programs are typically
restricted from being able to synthesize input across
integrity levels, there are some limited circumstances
where this is permitted. One easy to see instance
of this is the on-screen keyboard program (osk.exe)
which, despite running without a UAC prompt, can
generate keyboard input messages that are transmit-
ted to other processes, even elevated administrative
processes. This would at first appear to be a break
in the security system; questions along the lines of
”If one program can magically send keystrokes to
higher integrity processes, why can’t another?” come
to mind. However, there are in fact some carefully-
designed restrictions that are intended to prevent a
user (or a program) from arbitrarily being able to
execute custom code with this ability.

First of all, in order to request special access to send
unrestricted keyboard input, a program’s main exe-
cutable must resolve to a path within the Program
Files or Windows directory1. Additionally, any such
program must also be signed with a valid digital sig-
nature from any trusted code signing root. This is
a fairly useless check from a security perspective, in
the author’s opinion, as anybody can pay a code sign-
ing authority to get a code signing certificate in their
own name; code signing certificates are not a guar-
antee of malware-free (or even bug-free) code. Al-
though it would be easy to bypass the second check
with a payment to a certificate issuing authority, a
plain user cannot so easily bypass the first check re-
lating to the restriction on where the program main
executable may be located.

1Although the author feels that such a check is essentially
a giant hack at best, it does effectively prevent a ”plain user”
running at medium integrity from being able to run custom
code that can synthesize keystrokes to high integrity processes,
as a plain user would not be able to write to any of these
directories

Even if a user cannot launch custom code directly
as a program with access to simulate keystrokes to
higher integrity processes (known as ”uiaccess” in-
ternally), one would tend to get the impression that
it would be possible to simply inject code into a run-
ning osk.exe instance (or other process with uiac-
cess). This fails as well, however; the process that
is responsible for launching osk.exe (the same bro-
ken service that is responsible for launching the UAC
consent user interface, the ”Application Information”
(appinfo) service) creates osk.exe with a higher than
normal integrity level in order to use the integrity
level security mechanism to block users from being
able to inject code into a process with access to sim-
ulate keystrokes.

When the appinfo service receives a request to launch
a program that may require elevation, which occurs
when ShellExecute is called to start a program, it
will inspect the user’s token and the application’s
manifest to determine what to do. The application
manifest can specify that a program runs with the
user’s integrity level, that it needs to be elevated (in
which case a consent user interface is launched), that
it should be elevated if and only if the current user
is a non-elevated administrator (otherwise the pro-
gram is to be launched without elevation), or that
the program requests the ability to perform keystroke
simulation to high integrity processes.

In the case of a launch request for a program request-
ing uiaccess, appinfo!RAiLaunchAdminProcess
is called to service the request. The pro-
cess is then verified to be within the
(hardcoded) set of allowed directories by
appinfo!AiCheckSecureApplicationDirectory.
After validating that the program is being launched
from within an allowed directory, control is even-
tually passed to appinfo!AiLaunchProcess which
performs the remaining work necessary to service the
launch request. At this point, due to the ”secure”
application directory requirement, it is not possible
for a limited user (or a user running with low in-
tegrity, for that matter) to place a custom executable
in any of the ”secure” application directories.

Now, the appinfo service is capable of servicing re-

3



quests from processes of all integrity levels. Due to
this fact, it needs to be capable of determining the
correct integrity level to create a new process from
at this point. Because the new process is not be-
ing launched as a full administrator in the case of
a process requesting uiaccess, no consent user inter-
face is displayed for elevation. However, the appinfo
service does still need a way to protect the new pro-
cess from any other processes running as that user
(as access to synthesize keystrokes is considered sen-
sitive). For this task, the appinfo!LUASetUIAToken
function is called by appinfo to protect the new pro-
cess from other plain user processes running as the
calling user. This is accomplished by adjusting the
token that will be used to create the new process to
run at a higher integrity level than the caller, unless
the caller is already at high integrity level (0x3000).
The way LUASetUIAToken does this is to first try to
query the linked token associated with the caller’s to-
ken. A linked token is a second, shadow token that
is assigned when a computer administrator logs in
with UAC enabled; in the UAC case, the user nor-
mally runs as a restricted version of themselves, with-
out their administrative privileges (or Administrators
group membership), and at medium integrity level.

If the calling user does indeed have a linked token,
LUASetUIAToken retrieves the integrity level of the
linked token for use with the new process. However,
if the user doesn’t have a linked token (i.e. they are
logged on as a true plain user and not an administra-
tor running without administrative privileges), then
LUASetUIAToken uses the integrity level of the caller’s
token instead of the token linked with the caller’s
token (in other words, the elevation token). In the
case of a computer administrator this approach would
normally provide sufficient protection, however, for a
limited user, there exists a small snag. Specifically,
the integrity level that LUASetUIAToken has retrieved
matches the integrity level of the caller, so the caller
would still have free reign over the process.

To counteract this issue, there is an additional check
baked into LUASetUIAToken to determine if the in-
tegrity level that was selected is at (or above) high
integrity. If the integrity level is lower than high in-

tegrity, LUASetUIAToken adds 16 to the integrity level
(although integrity levels are commonly thought of as
just having four values, that is, low, medium, high,
and system, there are 0x1000 unnamed integrity lev-
els in between each named integrity level). So long
as the numeric value of the integrity level chosen
is greater than the caller’s integrity level, the new
process will be protected from the caller. In the
case of the caller already being a full, elevated ad-
ministrator, there’s nothing to protect against, so
LUASetUIAccess doesn’t attempt to raise the in-
tegrity level above high integrity.

After determining a final integrity level,
LUASetUIAToken changes the integrity level in
the token that will be used to launch the new
process to match the desired integrity level. At
this point, appinfo is ready to create the process.
If needed, the user profile block is loaded and
an environment block is created, following which
advapi32!CreateProcessAsUser is called to launch
the uiaccess-enabled application for the caller with a
raised integrity level. After the process is created,
the output parameters of CreateProcessAsUser
are marshalled back into the caller’s process, and
AiLaunchProcess signals successful completion to
the caller.

If one has been following along so far, the question
of “How does all of this relate to Internet Explorer
Protected Mode” has probably crossed one’s mind. It
turns out that there’s a slight deficiency in the pro-
tocol outlined above with respect to creating uiac-
cess processes. The problem lies in the fact that
AiLaunchProcess returns the output parameters of
CreateProcessAsUser back to the caller’s process.
This is dangerous, because in the Windows security
model, security checks are done when one attempts
to open a handle; after a handle is opened, the ac-
cess rights requested are forever more associated with
that handle, regardless of who uses the handle. In
the case of appinfo, this turns out to be a real prob-
lem because appinfo, being the creator of the new
process, is handed back a thread and process handle
that grant full access to the new thread and process,
respectively. Appinfo then marshals these handles

4



back to the caller (which may be running at low in-
tegrity level). At this point, a privilege escalation
problem has occured; the caller has been essentially
handed the keys to a higher integrity process. While
the caller would never normally be able to open a
handle to the new process on its own, in this case, it
doesn’t have to, as the appinfo service does so on its
behalf and returns the handles back to it.

Now, in the ShellExecute case, the client stub for
the appinfo AiLaunchAdminProcess routine doesn’t
want (or need) the process or thread handles, and
closes them immediately after. However, this is ob-
viously not a security barrier, as this code is running
in the untrusted process and could be patched out.
As such, there exists a privilege escalation hole of
sorts with the appinfo service. It can be abused to,
without user interaction, leak a handle to a higher in-
tegrity process to a low integrity process (such as In-
ternet Explorer when operating in Protected Mode).
Furthermore, even Internet Explorer in Protected
Mode, running at low integrity, can request to launch
an already-existing uiaccess-flagged executable, such
as osk.exe (which is conveniently already in a ”se-
cure” application directory, the Windows system di-
rectory). With a process and thread handle as re-
turned by appinfo, it is possible to inject code into
the new process, and from there, as they say, the rest
is history.

4 Caveats

Although the problem outlined in this article is in-
deed a privilege escalation hole, there are some limi-
tations to it. First of all, if the caller is running as a
plain user instead of a non-elevated administrator,
appinfo creates the uiaccess process with integrity
level 0x1010 (low integrity + 16). This is still less
than medium integrity (0x2000), and thus in the true
limited user case, the new process, while protected
from other low integrity processes, is still unable to
interfere with medium integrity processes directly.

In the case where a user is running as an adminis-

trator but is not elevated (which happens to be the
default case for most Windows Vista users), it is true
that appinfo.exe returns a handle to a process run-
ning at high integrity level. However, only the in-
tegrity level is changed; the process is most certainly
not an administrator (and in fact has BUILTIN
Administrators as a deny only SID). This does mean
that the new process is quite capable of injecting code
into any processes the user has started though (with
zero user interaction). If the user happens to already
have a high integrity process running on the desktop
as a full administrator, the new process could be used
to attack it as the process would be running at the
same integrity level and it would additionally be run-
ning as the same user. This means that in the default
configuration, this issue can be used to escape from
Protected Mode, but one is still not given full-blown
administrative access to the system. However, any
location in the user profile directory could be written
to. This effectively eliminates the security benefit
of Protected Mode for a non-elevated administrator
(with respect to treating the user as a plain user).

Source code to a simple program to demonstrate
the appinfo service issue is included with the arti-
cle. The problem is at this point expected to be
fixed by Windows Vista Service Pack 1 and Win-
dows Server 2008 RTM. The sample code launches
osk.exe with ShellExecute, patches out the CloseHan-
dle calls in ShellExecute to retain the process and
thread handles, and then injects a thread into osk.exe
that launches cmd.exe. The sample program also in-
cludes a facility to create a low integrity process to
verify correct function; the intended use is to launch
a low integrity command shell, verify that directories
such as the user profile directory cannot be written
to, and then use the sample program from the low in-
tegrity process to launch a medium integrity cmd.exe
instance without user interaction, which does indeed
have free reign of the user profile directory. The same
code will operate in the context of Internet Explorer
in Protected Mode, although in the interest of keep-
ing the example clear and concise, the author has not
included code to inject the sample program in some
form into Internet Explorer (which would simulate an
attack on the browser).

5



Note that while the uiaccess process is launched as a
high integrity process, it is configured such that un-
less a token is explicitly provided that requests high
integrity, new child processes of the uiaccess process
will launch as medium integrity processes. It is possi-
ble to work around this issue and retain high integrity
with the use of CreateProcessAsUser by code in-
jected into the uiaccess process if desired. However,
as described above, simply retaining high integrity
does not provide administrative access on its own. If
there are no other high integrity processes running
as the current user on the current desktop, running
as high integrity and running as medium integrity
with the non-elevated token are functionally equiva-
lent, for all intents and purposes.

5 Conclusion

UAC, Internet Explorer Protected Mode, and the in-
tegrity level model represent an entirely new way of
thinking about security in the Windows world. Tra-
ditionally, Windows security has been a user-based
model, where all processes that execute as a user were
considered equally trusted. Windows Vista and Win-
dows Server 2008 are the first steps towards changing
this model to support the concept of a untrusted pro-
cess (as opposed to an untrusted user). While this
has the potential to significantly benefit end user se-
curity, as is the case with Internet Explorer Protected
Mode, there are bound to be bumps along the way.
Writing an integrity level broker process is difficult.
It is very easy to make simple mistakes that compro-
mise the security of the integrity level mechanism, as
the appinfo issue highlights. The author would like
to think that by shedding light on this type of pro-
gramming error, future issues of a similar vein may
be prevented before they reach end users.

6


	Introduction
	Protected Mode and Integrity Levels
	Breaking the Broker
	Caveats
	Conclusion

