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Abstract

Generalizing information is a common method of re-
ducing the quantity of data that must be considered
during analysis. This fact has been plainly illustrated
in relation to static data flow analysis where previ-
ous research has described algorithms that can be
used to generalize data flow information. These gen-
eralizations have helped support more optimal data
flow analysis in certain situations. In the same vein,
this paper describes a process that can be employed
to generalize and persist data flow information along
multiple generalization tiers. Each generalization tier
is meant to describe the data flow behaviors of a con-
ceptual software element such as an instruction, a
basic block, a procedure, a data type, and so on.
This process makes use of algorithms described in
previous literature to support the generalization of
data flow information. To illustrate the usefulness of
the generalization process, this paper also presents
an algorithm that can be used to determine reacha-
bility at each generalization tier. The algorithm de-
termines reachability starting from the least specific
generalization tier and uses the set of reachable paths
found to progressively qualify data flow information
for each successive generalization tier. This helps to
constrain the amount of data flow information that
must be considered to a minimal subset.

1 Introduction

Data flow analysis uses data flow information to solve
a particular data flow problem such as determining
reachability, dependence, and so on. The algorithms
used to obtain data flow information may vary in
terms of accuracy and precision. To help quantify
effectiveness, data flow algorithms may generally be
categorized based on specific sensitivities. The first
category, referred to as flow sensitivity is used to con-
vey whether or not an algorithm takes into account
the implied order of instructions. Path sensitivity is
used to convey whether or not an algorithm considers
predicates. Finally, algorithms may also be context-

sensitive if they take into account a calling context to
restrict analysis to realizable paths when considering
interprocedural data flow information.

Data flow information is typically collected by stat-
ically analyzing the data dependence of instructions
or statements. For example, conventional def-use
chains describe the variables that exist within in(),
out(), use(), def(), and kill() set for each instruction
or statement. Understanding data flow information
with this level of detail makes it possible to statically
solve a particular data flow problem. However, the
resources needed to represent the def-use data flow
information can be prohibitive when working with
large applications. Depending on the data flow prob-
lem, the amount of data flow information required to
come to a solution may be in excess of the physical
resources present on a computer performing the anal-
ysis. This physical resource problem can be solved
using at least two general approaches.

The most basic approach might involve simply par-
titioning, or fragmenting, analysis information such
that smaller subsets are considered individually
rather than attempting to represent the complete
set of data flow information at once[15]. While this
would effectively constrain the amount of physical re-
sources required, it would also directly impact the
accuracy and precision of the underlying algorithm
used to perform data flow analysis. For instance,
identifying the “interesting portion” of a program
may require more state than can be feasibly obtained
in single program fragment. A second and poten-
tially more optimal approach might involve gener-
alizing data flow information. By generalizing data
flow information, an algorithm can operate within
the bounds of physical resources by making use of a
more abstract view of the complete set of data flow
information. The distinction between the generaliz-
ing approach and the partitioning approach is that
the generalized data flow information should not af-
fect the accuracy of the algorithm since it should still
be able to represent the complete set of generalized
data flow information at once.

There has been significant prior work that has illus-
trated the effectiveness of generalizing data flow in-



formation when performing data flow analysis. The
def-use information obtained between instructions
or statements has been generalized to describe sets
for basic blocks. Horwitz, Reps, and Binkley de-
scribe how a system dependence graph (SDG) can
be derived from intraprocedural data flow informa-
tion to produce a summary graph which convey
context-sensitive data flow information at the pro-
cedure level[7]. Their paper went on to describe an
interprocedural slicing algorithm that made use of
SDGs. Reps, Horwitz, and Sagiv later described a
general framework (IFDS) in which many data flow
analysis problems can be solved as graph reachability
problems[13, 14]. The algorithms proposed in their
paper focus on restricting analysis to interprocedu-
rally realizable paths to improve precision. Identify-
ing interprocedurally realizable paths has since been
compared to the concept of context-free-language
(CFL) reachability (CFL-reachability)[8]. These al-
gorithms have helped to form the basis for techniques
used in this paper to both generalize and analyze data
flow information.

This paper approaches the generalization of data flow
information by defining generalization tiers at which
data flow information can be conveyed. A generaliza-
tion tier is intended to show the data flow relation-
ships between a set of conceptual software elements.
Examples of software elements include an instruction,
a basic block, a procedure, a data type, and so on.
To define these relationships, data flow information
is collected at the most specific generalization tier,
such as the instruction tier, and then generalized to
increasingly less-specific generalization tiers, such as
the basic block, procedure, and data type tiers. Fig-
ure 1 provides a visual representation of some of the
generalization tiers which may exist for data flow in-
formation collected from a program. The concentric
rings are meant to illustrate containment.

To illustrate the usefulness of generalizing data flow
information, this paper also presents a progressive al-
gorithm that can be used to determine reachability
between nodes on a data flow graph at each gener-
alization tier. The algorithm starts by generating
a data flow graph using data flow information from
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Figure 1: Logical generalization tiers at which data
flow information can be described. Elaborate from
least-specific to most-specific and generalize from
most-specific to least-specific.

the least-specific generalization tier. The graph is
then analyzed using a previously describe algorithm
to determine reachability between an arbitrary set of
nodes. The set of reachable paths found is then used
to qualify the set of more-specific potentially reach-
able paths found at the next generalization tier. The
more-specific paths are used to construct a new data
flow graph. These steps then repeat using each more-
specific generalization tier until it is not possible to
obtained more detailed information. The benefit of
this approach is that a minimal set of data flow in-
formation is considered as a result of progressively
qualifying data flow paths at each generalization tier.
It should be noted that different reachability prob-
lems may require state that is prohibitively large. As
such, it is helpful to consider refining a reachability
problem to operate more efficiently by making use of
generalized information.

This paper is organized into two sections. §2 dis-
cusses the algorithms used to generalize data flow
information at each generalization tier. §3 describes



the algorithm used to determine reachable data flow
paths by progressively analyzing data flow informa-
tion at each generalization tier. It should be noted
in advance that the author does not claim to be an
expert in this field; rather, this paper is simply an
explanation of the author’s current thoughts. These
thoughts attempt to take into account previous work
whenever possible to the extent known by the author.
Given that this is the case, the author is more than
willing to receive criticism relating to the the ideas
put forth in this paper.

2 Generalization

Generalizing data flow information can make it possi-
ble to analyze large data sets without losing accuracy.
This section describes the process of generalizing in-
formation at each generalization tier. As a matter of
course, each generalization tier uses data flow infor-
mation obtained from its preceding more specific gen-
eralization tier. In this way, the basic block tier gen-
eralizes information obtained at the instruction tier,
the procedure tier generalizes information obtained
at the basic block tier, and so on. The algorithms
used to generalize information at each generalization
tier can have a direct impact on the accuracy of the
information that can be obtained when used during
data flow analysis. The subject of accuracy will be
addressed for each specific tier.

To obtain generalized data flow information, a set of
target executable image files, or modules, must be de-
fined. The target modules serve to define the context
from which data flow information will be obtained
and generalized. The general process used to accom-
plish this involves visiting each procedure within each
module. For each procedure, data flow information is
collected at the instruction tier and is then general-
ized to each less-specific tier. To facilitate the reach-
ability algorithm, it is assumed that as the data flow
information is collected, it is persisted in a form such
that can be accessed on demand. The process de-
scribed in this paper assumes a normalized database
is used to contain the data flow information found at

each generalization tier. In this manner, the upper
limit associated with the number of target modules
is tied to the amount of available persistent storage
with respect to the amount required by a given data
flow problem.

Before proceeding, it is important to point out that
while this paper describes explicit algorithms for gen-
eralizing at each tier, it is entirely possible to substi-
tute alternative algorithms. This serves to illustrate
that the concept of generalizing information along
generalization tiers is sufficiently abstract enough to
support representing alternate forms of data flow and
control flow information. By using different algo-
rithms, it is possible to convey different forms of data
flow relationships which vary in terms of precision
and accuracy.

2.1 Instruction Tier

Generalizing data flow information presupposes that
there is data flow information to generalize. As such,
a base set of data flow information must be collected
first. For the purposes of this paper, the most specific
data flow information is collected at the instruction
tier using the Static Single Assignment (SSA) im-
plementation provided by Microsoft’s Phoenix frame-
work, though other algorithms could just as well be
used[11]. SSA is an elegant solution to the prob-
lem of representing data flow information in a flow-
sensitive manner. Each definition and use of a given
variable are defined in terms of a unique variable
version which makes it possible to show clear, un-
ambiguous data flow relationships. In cases where
data flow information may merge along control flow
paths, SSA makes use of a phi function which acts
as a pseudo-instruction to represent the merge point.
Obtaining distinct data flow paths at the instruction
tier can be accomplished by traversing an SSA graph
for a given procedure starting from each root vari-
able, which have no prior definitions, and proceeding
to each reachable leaf variable, which have no sub-
sequent uses, are encountered along each data flow
path. The end result of this traversal is the complete
set of data flow paths found within the context of a



given procedure.

One of SSA’s limitations is that it is only designed
to work intraprocedurally and therefore makes no ef-
fort to describe the behavior of passing data between
procedures, such as through input and output param-
eters. In order to provide an accurate, distinct path
data flow representation, one must take into account
interprocedural data flow. One method of accom-
plishing this is to generalize the concept of SSA’s phi
function and use it represent formal parameters. In
this way, the phi function can be used to represent
data flow merges that happen as a result of data pass-
ing as input or output parameters when a procedure
is called. A phi function can be created to represent
each formal input and output parameter for a proce-
dure, thus linking definitions of parameters at a call
site to actual parameter uses in a callee. Reps, Hor-
witz, and Sagiv describe a concept similar to this[13].

In addition to using phi functions to link the defini-
tions and uses of formal parameters, it is also neces-
sary to fracture data flow paths at call sites that are
found within a procedure . This is necessary because
data flow paths collected using SSA information will
convey a relationship between the input parameters
passed to a procedure and the output parameters re-
turned by a procedure. This is the case because a call
instruction at a call site appears to use input param-
eters and define output parameters, thus creating an
implicit link between input and output parameters.
Since SSA information is obtained intraprocedurally,
it is not possible to know in advance whether or not
an input parameter will influence an output parame-
ter.

To fracture a data flow path, the instructions that de-
fine input parameters passed at a given call site are
instead linked directly to the associated formal input
parameter phi functions that are found in the context
of the target procedure. Likewise, instructions that
use output parameters previously defined by the call
instruction are instead linked directly to the associ-
ated formal output parameter phi functions found in
the context of the target procedure. This has the ef-
fect of breaking the original data flow path into two
disconnected data flow paths at the call site location.

The linking of actual parameters and call site param-
eters with formal parameters has been illustrated in
previous literature. Horwitz, Reps, and Binkley used
this concept during the construction of a system de-
pendence graph (SDG)[7]. The concept of creating
symbolic variables that are later used to link infor-
mation together is not new[15]. Figure 2 provides an
example of what a conventional and fractured data
flow path might look like.

Corventional Fractured
iarg.0 Idarg.0
call g(int) fin(g, x}

l ———

fout(g, retval)

'

stloc.0

stloc.0

Figure 2: Fracturing a data flow path at a call site.
Call instructions no longer act as the receivers or
producers of data that is passed between procedures.
Instead, formal parameters represent interprocedural
phi functions.

Using the fracturing concept, the instruction tier’s
path-sensitive data flow information for a given pro-
cedure becomes disconnected. This helps to improve
the overall accuracy of the data flow paths that are
conveyed. Fracturing also has the added advantage
of making it possible to use formal parameter phi
functions to dynamically link a caller and a callee at
runtime. This makes it possible to identify context-
sensitive interprocedural data flow paths at the gran-
ularity of an instruction. This ability will be de-
scribed in more detail when the reachability algo-
rithm is described in §3.



With an understanding of the benefits of fracturing,
it is now possible to define the general form that data
flow paths may take at the instruction tier. This gen-
eral form is meant to describe the structure of data
flow paths at the instruction tier in terms of the po-
tential set of origins, transient, and terminal points
with respect to the general instruction types. Based
on the description given above, it is possible to cat-
egorize instructions into a few general types. Using
these general instruction types, the general form of
instruction data flow paths can be captured as illus-
trated by the diagram in figure 3.

1. value: Defines or uses a data value

2. compare: Compares a data value

3. fin: Pseudo instruction representing a formal in-
put parameter

4. fout: Pseudo instruction representing a formal
output parameter

Origin

value firt fout

Terminus

Figure 3: General forms of data flow paths at the
instruction tier.

Based on this general description of instruction data
flow paths, it is helpful to consider a concrete ex-
ample. Consider the example source code described

below which shows the implementation of the f func-
tion.

static public int f(int x)
{

return (x > 0) ? g(x)
}

DX+ 1;

This function is intentionally very simple so as to
limit the number of data flow paths that must be
represented visually. Using the concepts described
above, the instruction data flow paths that would be
created as a result of analyzing this procedure are
shown in figure 4. Note that the call site for the g
function results in two disconnected data flow paths.
The end result is that there are four unique data
flow paths within this procedure, each denoted by
a unique edge color.

firif, x}
P
¥
Idarg.0 Idarg.0 Idc
ldc -
add fout{g, retval)
l ¥ -
brcmp Idarg.0 ret
¥ vy 4
fin(g. x) fout{f, retval)

Figure 4: Instruction tier data flow paths for the ex-
ample code. The context for these data flow paths is
the f function.



2.2 Basic Block Tier

Once the complete set of data flow paths are identi-
fied at the instruction tier for a given procedure, the
next step is to generalize data flow information to the
basic block tier. At the basic block tier, instruction
data flow paths should be generalized to show path-
sensitive data flow interactions between basic blocks
rather than instructions. This level of generalization
reduces the amount of information needed to repre-
sent data flow paths. For example, there are many
cases where data will be passed between multiple in-
structions within the same basic block. Using basic
block tier generalization, those individual operations
can be generalized and represented as a single basic
block. The generalized basic block data flow paths
can then be persisted for subsequent use when de-
termining reachability in much the same fashion that
was used at the instruction tier.

Since the instruction tier’s data flow information has
been fractured and parameters passed at call sites
have been tied to phi functions, an approach must be
defined to preserve this information at the basic block
tier during generalization. An easy way of preserv-
ing this information is to define the formal parame-
ters which represent input and output parameters as
being contained within distinct pseudo blocks. For
example, the phi functions representing formal input
parameters can exist within a formal entry pseudo
block. Likewise, the phi functions representing for-
mal output parameters can exist within a formal exit
pseudo block. Both pseudo blocks can then be tied to
the procedure associated with the formal parameters.
Defining the underlying instruction tier phi functions
in this way makes it trivial to retain information that
will be needed to define context-sensitive interproce-
dural data flow at less-specific generalization tiers.
Like the instruction tier, it is possible to dynamically
link data passed to a pseudo block in a caller’s con-
text to subsequent uses in a callee’s context. Figure
5 shows the general form that basic block data flow
paths may take.

The act of generalizing instruction data flow paths
means that two or more distinct instruction data flow

Origin
fin fout block
fin fourt bock
Terminus

Figure 5: General forms of data flow paths at the
basic block tier.

paths may produce the same basic block data flow
path. When this occurs, only one basic block data
flow path should be defined since it will effectively
capture the information conveyed by the set of dis-
tinct instruction data flow paths. Each corresponding
instruction data flow path should still be associated
with a single basic block data flow path. This asso-
ciation makes it possible to show the set of instruc-
tion data flow paths that have been generalized by a
specific basic block data flow path. The association
can be persisted in a normalized database by creat-
ing a one-to-many link table between basic block and
instruction data flow paths. Figure 6 provides an ex-
ample of what would happen when generalizing the
instruction data flow paths described in figure 4.

2.3 Procedure Tier

Generalizing data flow paths from the basic block tier
to the procedure tier further reduces the amount of
information needed to show data flow behavior. Pro-
cedure tier data flow paths are meant to show how
data is passed between procedures through formal
parameters. This covers scenarios such as passing a
procedure’s formal input parameter to a child proce-
dure’s formal input parameter, using the formal out-
put parameter of a child procedure as the formal in-



fin(f, x)
l T
block 1 block 2 block 3
[
¥
fim(g, x)
Y
foutig, retval) +| block 4
|
¥ ‘L ¥
fout(f, retwval)

Figure 6: Basic block tier data flow paths obtained by
generalizing the instruction data flow paths described
in figure 4. The context for these data flow paths is
the f function.

put parameter to another called procedure, and so
on. These behaviors are all represented within the
context of a particular procedure.

Based on these constraints, only two classes ofbasic
block data flow paths need to be considered. The
first class involves data traveling from any block to a
formal input or output parameter, thus showing in-
terprocedural flows. The second class involves data
traveling from a formal input or formal output pa-
rameter to a terminal point in a procedure. This
effectively eliminates any intraprocedural data flows
that are not carried over to another procedure in
some form. Since data flow information about which
formal parameters are used or defined is conveyed by
basic block data flow paths, it is possible to simply
generalize this data flow information to show data
flowing to formal parameters within the context of a
given procedure. While it may be tempting to think
that one must only show data flow paths between two

formal parameters, it is also necessary to show data
flow paths that originate from data that is locally
defined within a procedure, such as through a local
variable which is not populated by a formal parame-
ter. As such, the general form that data flow paths
may take at the procedure tier is illustrated by fig-
ure 7. Figure 8 provides an example of what would
happen when generalizing the basic block data flow
paths described in figure 6.

Origin
fin fout arigin
fin terminal fout
Termminus

Figure 7: General forms of data flow paths at the
procedure tier.

fin(f, x) origin(f) fout(g, retval)
fin(g. x) foutif, retval)

Figure 8: Procedure tier data flow paths obtained by
generalizing the basic block data flow paths described
in figure 4. The context for these data flow paths is
the f function.

Procedure data flow paths may generalize multiple
basic block data flow paths and thus can make use of
a one-to-many link table to illustrate this association.
While generalizing data flow paths to the procedure
tier is trivial, the challenging aspect comes when de-



termining reachability. This will be discussed in more
detail in §3.

2.4 Data Type Tier

Using data flow information obtained from the proce-
dure tier, it is sometimes possible, depending on lan-
guage features, to generalize data flow information to
the data type tier. Generalizing to the data type tier
is meant to show how formal parameters are passed
between data types within the context of a given data
type. This relies on the underlying language having
the ability to associate procedures with data types.
For example, object-oriented languages are all capa-
ble of associating procedures with data types, such
as through classes defined in C++, C#, and other
languages. In the case of languages where data types
do not have procedures, it may instead be possible
to associate procedures with the name of the source
file that contains them. In both cases, it is possible
to show formal parameters passing between elements
that act as containers for procedures, regardless of
whether the underlying elements are true data types.

The benefit of generalizing data flow information at
the data type tier is that it helps to further reduce the
amount of data flow information that must be rep-
resented. Since the small example source code that
has been used to illustrate generalizations at each
tier only involves passing formal parameters within
the same data type, it is useful to consider an alter-
native example which involves passing data between
multiple data types.

class Company {
void AddEmployee(int num) {
Person employee = new Person(num) ;
employees.Add (employee) ;
Console.WriteLine("New employee {0}", employee);
}
int EmployeeCount() {
return employees.Count;
}
private ArrayList employees;

}

Figure 9 shows the data type data flow paths for the

example code shown above. It is important to note
that unlike previous tiers, the specific formal param-
eters that are being passed between types is not pre-
served. Instead, only the fact that formal parame-
ters are passed between data types is retained. In
this manner, fin indicates a data type’s formal input
parameter and fout indicates a data type’s formal
output parameter.

fin[Systeam. Conzola)

fin{ System. ArrayList)

fin{Company)
fin(Person) fout(Person)
fout(System. AmayList] = fout(Company)

Figure 9: Data type tier data flow paths obtained by
generalizing the procedure tier data flow paths. The
context for these data flow paths is the Company data

type.

In a fashion much the same as previous generaliza-
tion tiers, a single data type data flow path can rep-
resent multiple underlying procedure data flow paths.
Each generalized procedure data flow path can be as-
sociated with its corresponding data type data flow
path through a one-to-many link table in a normal-
ized database.



2.5 Module Tier

Generalizing data flow information to the module tier
is meant to show how data flows between distinct
modules. As with each step in the generalization
process, the module tier data flow paths lose much
of the information that is conveyed at more specific
tiers. Figure 10 shows module tier data flow paths
that would be defined when generalizing the data
type data flow paths illustrated in figure 9.

fin{Company._dil} fin{System.dll)

l T

fin{Parson.dll) fout(Person.dll)

fout(System.dll) p—e{ fout{Company.dil)

Figure 10: Module tier data flow paths obtained by
generalizing the data type tier data flow paths. The
context for these data flow paths is the Company.dll
module.

2.6 Abstract Tiers

Once data flow paths have been generalized from
the instruction tier through the module tier, it is
no longer possible to create additional concrete gen-
eralizations for most runtime environments'. Even
though it may not be possible to establish concrete
generalizations, it is possible to define abstract gen-
eralizations. An abstract generalization attempts to
show data flow relationships between abstract ele-
ments. A good example of an abstract element would
be a logical component which is defined in the archi-
tecture of a given application. For example, a VPN
client application might be composed of a user inter-
face component and a networking component, each of

1 An exception to this is managed code which has an addi-
tional concrete assembly tier

which may consist of multiple concrete modules. By
defining logical components and associating concrete
modules with each component, it is possible to fur-
ther generalize information beyond the module tier.

Given the example described above, it may be pru-
dent to define two abstract generalization tiers. The
first abstract tier is the component tier. In this con-
text, a component is defined as a logical software
component that contains one or more concrete mod-
ules. The component tier makes it possible to il-
lustrate data flow between conceptual components
within an application as derived from how data flows
between concrete modules. The second abstract tier
is the application tier. The application tier can be
used to illustrate how data is passed between con-
ceptual applications. For example, a web browser
application passes data in some form to a web server
application, both of which consist of conceptual com-
ponents which, in turn, consist of concrete modules.

The caveat with abstract generalization tiers is that
it must be possible to illustrate data flow between
what may otherwise be disjoint concrete elements.
The reason for this is that, often times, the paths
that data will take between two modules which be-
long to different logical components will be entirely
indirect with respect to one another. For this reason,
it is necessary to devise a mechanism to bridge data
flow paths between concrete software elements that
belong to each logical component or application. A
particularly useful example of an approach that can
be taken to bridge two distinct components can be
found in web services.

In a web services application, it is often common
to have a client component and a server compo-
nent. The two components pass data to one another
through an indirect channel, such as through a web
request. For this reason, it is not immediately possi-
ble to show direct data flow paths from a web client
component to a web service component. To solve this
problem, one can define a mechanism that bridges the
formal parameters associated with the web service
method that is being invoked. In this manner, the
the formal input parameters for a web service method
found on the client side can be implicitly linked and



shown to define the formal input parameters received
on the web service side. By illustrating data flow at
a concrete tier, it is possible to generalize data flow
behaviors all the way up through the abstract tiers.

The benefit of describing data flow behavior at ab-
stract tiers is that it makes it possible to derive data
flow behaviors between abstract software elements
rather than strictly focusing on concrete software el-
ements. This is useful when attempting to view an
application’s behavior at a glance rather than wor-
rying about the specific details relating to how data
is passed. For example, this could be used to help
validate threat models which describe how data is
expected to be passed between abstract components
within an application.

When generalizing information at abstract tiers, the
only information that can be conveyed, at least based
on the approach described thus far, is whether or not
a component or application are passing data through
a formal input or formal output parameter. The
specifics of which formal parameters are passed is
no longer available for use in generalization. Using
the example shown at the data type tier, one might
assume the following component associations: Com-
pany.dll and Person.dll, which contain the Company
data type and Person data type, are part of the user
interface component of a human resources applica-
tion. The classes used from system libraries can be
generically grouped as belonging to an external li-
brary component. Using these, groupings, the com-
ponent data flow paths may be represented as shown
in figure 11.

As with all previously described generalization tiers,
a single component data flow path may represent
multiple module data flow paths. The single compo-
nent data flow path should be associated with each
corresponding module data flow path through a one-
to-many link table in a normalized database.

10

fout{External Library)

:

fout{User Interface)

fin[External Library)

i

fin[User Interfacea)

Figure 11: Component tier data flow paths obtained
by generalizing the module tier data flow paths. The
context for these data flow paths is the user interface
component.

3 Reachability

The real benefit of the generalizations described in
§2 can be realized when attempting to solve a graph
reachability problem. By generalizing data flow be-
haviors to both abstract and concrete generalization
tiers, it is possible to reduce the amount of informa-
tion that must be represented when attempting to de-
termine graph reachability. This is further improved
by the fact that data flow paths found at less-specific
generalization tiers can be used to progressively qual-
ify potential data flow paths at more-specific general-
ization tiers. This qualification is possible due to the
fact that less-specific data flow paths are associated
with more-specific data flow paths at each general-
ization tier through a one-to-many link table, thus
permitting trivial expansion. The benefit of qual-
ifying data flow paths in this fashion is that only
the minimal set of information needed to determine
reachability must be considered at once at each gen-
eralization tier. This can drastically reduce the phys-
ical resources required to solve a graph reachability
problem by effectively limiting the size of a graph.
This general approach is captured by the Progressive
Qualified Elaboration (PQE) algorithm described by
3.1. This concept is very similar to the ideas out-
lined by Schultes’ highway hierarchy which is used to
optimize fast path discovery when identifying travel
routes in road networks[16].

For the purposes of this paper, graph reachability
is restricted to determining realizable paths between



Algorithm 3.1: PQE(E, Dsources Dsink)

P90
G «— BuildGraph(E)
while G#()
Vsource — Vertices(G, Dsource)
Vsink — Vertices(G, Dsin)
P.iaborated — Elaborate(P)
G — BUildGraph(Pelaborated)
return (P)

two flow descriptors: a source and a sink. A flow de-
scriptor provides information that is needed to iden-
tify corresponding vertices within a graph at each
generalization tier. The tables in figure 12 and figure
13 show the information needed to identify source
and sink vertices at each generalization tier for the
example that will be described in this section.

The PQE algorithm itself requires three parameters.
The first parameter, E, contains the set of general-
ized elements to be analyzed. For example, it may
contain the set of target modules that should be ana-
lyzed. The second and third parameters, Dgqyrce and
Dg;ink, represent the source and sink flow descriptors,
respectively.

The first step taken by the algorithm is to define P
as an empty set. P will be used to contain the set
of reachable paths between an actual set of sources
and sinks at a given generalization tier. After P
has been initialized, G is initialized to a flow graph
that conveys data flow relationships between the set
of elements provided in E. The approach taken to
construct the flow graph involves retrieving persisted
data flow information for the appropriate generaliza-
tion tier. Once P and G have been initialized, the
qualified elaboration process can begin.

For each loop iteration, a check is made to see if G is
an empty graph (contains no vertices). If G is empty,
the loop terminates. If G is not an empty graph,
reachable paths between the actual set of sources and
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sinks are determined. This is accomplished by first
identifying the vertices in G that are associated with
the flow descriptors Dgource and Dg;ni at the current
generalization tier. The actual set of sources and
sinks found to be associated with these descriptors
are stored in Viouree and Viink, respectively. With
the set of actual source and sink vertices identified,
a reachability algorithm, Reachability(), can be used
to determine the set of reachable paths in flow graph
G between the two sets of vertices, Vsource and Vgink.
The result of this determination is stored in P. The
final step in the iteration involves using qualified elab-
oration to construct a new flow graph containing
more-specific data flow paths which are qualified by
the set of data flow paths encountered in the reach-
able paths found in P. This set is then elaborated to
a subset that contains the associated data flow paths
from the next, more specific tier, such as by elaborat-
ing to a subset of basic blocks data flow paths from a
more general set of procedure data flow paths. The
result of the elaboration is stored in P.jgporated- Fi-
nally, a new flow graph is constructed and stored in
G using the elaborated set of flow paths contained
within Peraborated-

When it is not possible to obtain a more-detailed flow
set, such as when the instruction tier is reached, an
empty graph is created and the algorithm completes
by returning P. In the final iteration, P contains the
most detailed set of reachable data flow paths found
between the source and sink flow descriptors. The
benefit of approaching graph reachability problems
in this fashion is that only a subset of the elements
at any generalization tier need to be considered at
once. These subsets are dictated by the set of reach-
able data flow paths found at each preceding general-
ization tier. In this manner, the subset of procedure
data flow paths that need to be considered would be
effectively qualified by the set of data types and mod-
ules found to be involved in data flow paths between
the source and sink flow descriptors at less-specific
tiers.

For the purposes of this paper, the Reachability()
algorithm is designed to consider realizable paths at
each generalization tier in manner that is similar to



the concept described by Reps et al[13]. This involves
traversing the graph in context-sensitive fashion. To
accomplish this, the algorithm keeps a scope stack at
each generalization tier. The scope may be an as-
sembly, a type, or a procedure. When data is passed
through to a formal input parameter, the scope for
the formal input parameter is pushed onto the stack.
When data is returned through a formal output pa-
rameter to another location, the algorithm ensures
that the scope that is being returned to is the parent
scope. In this way, only realizable paths are con-
sidered at each generalization tier which limits the
number of paths that must be considered and also
has the benefit of producing more accurate results.

The specific algorithm used for the Elaborate() func-
tion involves using the set of data flow paths found at
a less-specific tier to identify the set of more-specific
data flow paths that have been generalized. This is
accomplished by simply using the one-to-many link
tables that were populated during generalization to
determine the subset of data flow paths that must
be considered at the next generalization tier. For ex-
ample, elaborating from a set of procedure data flow
paths would involve determining the complete set of
basic block data flow paths that have been general-
ized by the affected set of procedure data flow paths.

Based on this general description of the algorithm, it
is useful to consider a concrete example This section
provides a concrete illustration by determining reach-
ability between a source and a sink using an example
web application that consists of a web client and a
web service component. This is illustrated by pro-
gressively drilling down through each generalization
tier starting from the least-specific tier, the abstract
tier, and working toward the most-specific tier, the
instruction tier. At each tier, a description of the
number of data flow paths that must be represented
and the number of reachable data flow paths found is
given. This particular example will attempt to deter-
mine concrete reachable data flow paths between the
return value of HttpRequest.get_QueryString and
the first formal input parameter of Process.Start.
The implications of a reachable path between these
two points could be indicative of a command injec-
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tion vulnerability within the application. The tables
in figure 12 and figure 13 show the flow descriptors
for the source and sink, respectively. These flow de-
scriptors are used to identify associated vertices at
each generalization tier.

Tier Information

Component | fout(Undefined)

Module fout (System.Web.d11)

Data Type | fout(System.Web.HttpRequest)
Procedure fout (get_QueryString, 0)
Basic Block | fout(get_QueryString, 0)
Instruction | fout(get_QueryString, 0)

Figure 12: Source flow descriptor for the return value
of HttpRequest.get_QueryString

Tier Information

Component | fin(Undefined)

Module fin(System.dll)

Data Type | fin(System.Diagnostics.Process)
Procedure fin(Process.Start, 0)

Basic Block | fin(Process.Start, 0)
Instruction | fin(Process.Start, 0)

Figure 13: Sink flow descriptor for the first (zero-
indexed) formal input parameter of Process.Start

For this illustration, there is in fact a data flow path
that exists from the source descriptor to the sink
descriptor. However, unlike conventional data flow
paths, this data flow path happens to cross an ab-
stract boundary between the two components. In
this case, data is passed from the web client compo-
nent through an HTTP request to a method hosted
by the web service component. This path can be seen
by first looking at a portion of the web client code:

class Program {
static void Main(string[] args) {

HttpRequest request = new HttpRequest(

||a" . |lb|| , "C") ;

WebClient client

new WebClient();

client.ExecuteCommand (
request.QueryString["abc"]);



[WebServiceBinding]
public class WebClient :
[SoapDocumentMethod]
public void ExecuteCommand(string command) {
Invoke ("ExecuteCommand",
new object[] { command 1});

SoapHttpClientProtocol {

In this contrived example, data is shown as being
passed from a query string obtained from what is pre-
sumably a real HTTP request to the client portion
of the web service method FzecuteCommand. The
web service application, in turn, contains the follow-
ing code:

[WebService]
public class WebService {
[WebMethod]
public void ExecuteCommand(string command) {
System.Diagnostics.Process.Start (command) ;
}
}

In conventional tools, it would not be possible to di-
rectly model this data flow path because the data flow
path is indirect. However, using a simple methodol-
ogy to bridge the client-side formal input parameters
with the server-side formal input parameters at the
instruction tier, it is possible to connect the two and
represent data flow between the two conceptual soft-
ware elements at each generalization tier. The follow-
ing sections will provide visual examples of how the
PQE algorithm narrows down and eliminates unnec-
essary data flow paths at each generalization tier by
progressively qualifying data flow information. One
thing to note about the graphs at each tier is that
implicit edges have been created between formal in-
put and output parameters that reside in external
(un-analyzed) libraries. This is done under the as-
sumption that a formal input parameter may affect a
formal output parameter in some way in the context
of the code that is not analyzed. If all target code
paths have been analyzed, then this is not necessary.
The graphs shown at each tier were automatically
generated but have been modified to allow them to
fit within the margins of this document and in some
cases highlight important features.
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3.1 Abstract Tiers

Abstract tiers represent the most general view of the
data flow behaviors of an application. The data flow
behavior is modeled with respect to abstract software
elements, such as a component, rather than concrete
software elements, such as a module or a type. For
this example, it is assumed that the PQE algorithm
begins by modeling data flow behaviors between con-
ceptual components in a web application. The web
application is composed of two manually defined ab-
stract components, a Web Client and a Web Ser-
vice. These two components both rely on external li-
braries, as represented by the Undefined component,
which are outside of the scope of the application it-
self. When starting at the abstract tier, all abstract
data flow paths must be considered as potential data
flow paths. The component tier data flow graph for
this application is shown in figure 14.

Using the data flow graph shown in figure 14, PQE
uses the Reachability() algorithm to determine data
flow paths between a formal output parameter in the
Undefined component and a formal input parameter
in the Undefined component. At this generalization
tier, there are many different paths that can be taken
between these two components. This effectively re-
sults in the qualification of nearly all of the assembly
tier data flow paths. These data flow paths are used
to represent the data flow graph at the assembly tier.

In this example, PQE offers no improvements at ab-
stract tiers because it is a requirement that all ab-
stract data flow information be represented. Since
the amount of information required to represent ab-
stract data flow is minimal, this is not seen as a de-
ficiency. Furthermore, for this particular example,
nearly all component data flow paths are found to be
involved in reachable paths. At worst, this is indica-
tive that for small applications, it may not be nec-
essary to start the algorithm by looking at abstract
data flow information. Instead, one might immedi-
ately progress to the module or data type tiers.



ariginiWeb C1ient)

fout (Webh Service)

Figure 14: Complete component tier data flow graph
for the web application. Component nodes involved
in flow paths between the source and the sink have
been manually annotated in dark orange.

3.2 Module Tier

The module tier uses the set of data flow paths found
at the abstract component tier to construct a data
flow graph that shows the data flow relationships
between formal input and formal output parameters
passed between modules. The graph is generated us-
ing the one-to-many table that was populated during
generalization which conveys the module data flow
paths that were generalized by the set of qualified
component data flow paths. For this particular ex-
ample, nearly all of the module data flow paths were
qualified as potentially being involved in a reachable
path between the source and sink flow descriptor.
The graph that is generated as a result is shown in
figure 15.
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Figure 15: Module tier data flow graph for the web
application representing potentially reachable paths
between the source and sink flow descriptor. These
paths were qualified by reachable paths found at the
component tier. Module nodes involved in flow paths
between the source and the sink have been manually
annotated in dark orange.

Using this graph, the Reachability() algorithm is
again employed to find paths between the source
and sink flow descriptor at the module tier. In this
case, only the edges between the nodes highlighted
in dark orange are found to be involved in reachable
paths between fout (System.Web) and fin(System).
The important thing to note is that even at the
module tier, a data flow path is illustrated between
fin(WebClient) and fin(WebService). This will



be a trend that will continue to each more specific
generalization tier.

3.3 Data Type Tier

The data type tier uses the set of data flow paths
found at the module tier to construct a data flow
graph that shows the data flow relationships between
formal input and formal output parameters passed
between data types. The graph is generated using the
one-to-many table that was populated during gener-
alization which conveys the data type data flow paths
that were generalized by the set of qualified module
data flow paths. The graph that is generated as a
result is shown in figure 16.

Using the graph, the Reachability() algorithm is
again employed to find paths between the source and
sink flow descriptor at the data type tier. Due to
the simplicity of the example application, only a few
data flow paths were rendered. The complete data
flow path from fout(System.Web.HttpRequest) to
fin(System.Diagnostics.Process.Start) can be
clearly seen.

3.4 Procedure Tier

The procedure tier uses the set of data flow paths
found at the data type tier to construct a data flow
graph that shows the data flow relationships between
formal input and formal output parameters passed
between procedures. Unlike previous tiers, procedure
tier data flow paths explicitly identify the formal pa-
rameter index that data is being passed to. This helps
to further isolate data flow paths from one another
and improves the overall accuracy of paths that are
selected. The graph is generated using the one-to-
many table that was populated during generalization
which conveys the procedure data flow paths that
were generalized by the set of qualified data type data
flow paths. The graph that is generated as a result
is shown in figure 17.

Using the graph, the Reachability() algorithm is
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finWebSarvice . .WebService)
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fin(System.DHagnostics.Procass)

v

fout(System.Diagnostics.Process)

Figure 16: Data type tier data flow graph for the web
application representing potentially reachable paths
between the source and sink flow descriptor. These
paths were qualified by reachable paths found at the
module tier.

again employed to find paths between the source
and sink flow descriptor at the procedure tier. Due
to the simplicity of the example application, only a
few data flow paths were rendered. The complete
data flow path from fout(get_QueryString, 0) to
fin(Start, 0) can be clearly seen.
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v
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Figure 17: Procedure tier data flow graph for the web
application representing potentially reachable paths
between the source and sink flow descriptor. These
paths were qualified by reachable paths found at the
data type tier.
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3.5 Basic Block Tier

The basic block tier uses the set of data flow paths
found at the procedure tier to construct a data flow
graph that shows the data flow relationships between
formal input and formal output parameters passed
between basic blocks. Like the procedure tier, basic
block tier data flow paths also explicitly identify the
formal parameter index that data is being passed to.
The graph is generated using the one-to-many table
that was populated during generalization which con-
veys the basic block data flow paths that were gen-
eralized by the set of qualified procedure data flow
paths. The graph that is generated as a result is
shown in figure 18. Due to the way that Phoenix
currently represents basic blocks, the basic block tier
data flow paths offer very little generalization beyond
the instruction tier.

Using the graph, the Reachability() algorithm is
again employed to find paths between the source and
sink flow descriptor at the basic block tier. Due
to the simplicity of the example application, only a
few data flow paths were rendered. The complete
data flow path from fout(get_QueryString, 0) to
fin(Start, 0) can be clearly seen.

3.6 Instruction Tier

The instruction tier uses the set of data flow paths
found at the basic block tier to construct a data flow
graph that shows the data flow relationships between
formal input and formal output parameters passed
between instructions. Like the basic block tier, in-
struction tier data flow paths also explicitly identify
the formal parameter index that data is being passed
to. The graph is generated using the one-to-many ta-
ble that was populated during generalization which
conveys the instruction data flow paths that were
generalized by the set of qualified basic block data
flow paths. The graph that is generated as a result
is shown in figure 19. The instruction tier data flow
paths represent the final step taken by the algorithm
as they contain the most specific description of data
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Figure 18: Basic block tier data flow graph for the
web application representing potentially reachable
paths between the source and sink flow descriptor.
These paths were qualified by reachable paths found
at the procedure tier.

flow paths.

Using the graph, the Reachability() algorithm is
again employed to find paths between the source
and sink flow descriptor at the instruction tier. Due
to the simplicity of the example application, only a
few data flow paths were rendered. The complete

17

fout{get_guerystring, O

l

webClient.cs230:Main:

!

fin{get_Item, 0)

callwired

h 4

fout{get_Ttem, O

k J
webclient.es: 30:Main:

v

fin{Executecommand, 1)

v

fin{Executecommand, 1)

v

webService. €52 34 Enecutecommand: 1darg

!

webSeryice. £52 34 Executelammand:

!

fin{stare, 0}

callwvire®

call*

Figure 19: Instruction tier data flow graph for the
web application representing potentially reachable
paths between the source and sink flow descriptor.
These paths were qualified by reachable paths found
at the basic block tier.

data flow path from fout (get_QueryString, 0) to



fin(Start, 0) can be clearly seen along with source
lines that are encountered along the way.
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5 Conclusion

This document has attempted to convey the potential
benefits of generalizing data flow information along
generalization tiers. Each generalization tier is used
to represent the data flow behaviors of an abstract
or concrete software element such as an instruction,
basic block, procedure, and so on. Using this concept,
data flow information can be collected at the most
specific tier, the instruction tier, and then generalized
to increasingly less-specific tiers. The generalization
process has the effect of reducing the amount of data
that must be considered at once while still conveying
a general description of the manner in which data
flows within an application.

Generalized data flow information can be immedi-
ately used in conjunction with existing graph reach-
ability problems. For instance, a common task that
involves determining reachable data flow paths be-
tween a conceptual source and sink location within
an application can potentially benefit from operat-
ing on generalized data flow information. This paper
has illustrated these potential benefits by defining the
Progressive Qualified Elaboration (PQE) algorithm
which can be used to progressively determine reach-
ability at each generalization tier. By starting at the
least specific generalization tier and progressing to-
ward the most specific, it is possible to restrict the
amount of data flow information that must be consid-
ered at once to a minimal set. This is accomplished
by using reachable paths found at each generalization
tier to qualify the set of data flow paths that must
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be considered at more specific generalization tiers.

While these benefits are thought to be present, the
author has yet to conclusively prove this to be the
case. The results presented in this paper do not prove
the presumed usefulness of generalizing data flow in-
formation beyond the procedure tier. The author
believes that analysis of large applications involving
hundreds of modules could benefit from generalizing
data flow information to the data type, module, and
more abstract tiers. However, at the time of this writ-
ing, conclusive data has not been collected to prove
this usefulness. The author hopes to collect informa-
tion that either confirms or refutes this point during
future research.

At present, the underlying implementation used to
generate the results described in this paper has a
number of known limitations. The first limitation
is that it does not currently take into account formal
parameters that are not passed at a call site, such as
fields, global variables, and so on. This significantly
restricts the accuracy of the data flow model that it is
currently capable of generating. This limitation rep-
resents a more general problem of needing to better
refine the underlying completeness of the data flow
information that is captured.

While the algorithms presented in this paper were
portrayed in the context of data flow analysis, it is
entirely possible to apply them to other fields as well,
such as control flow analysis. The PQE algorithm it-
self is conceptually generic in that it simply describes
a process that can be employed to qualify the next
set of analysis information that must be considered
from a more generic set of analysis information. This
may facilitate future research directions.
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