
Locreate: An Anagram for Relocate

12/2006

skape
mmiller@hick.org

Chapter 1

Foreword

Abstract: This paper presents a proof of concept executable packer that does
not use any custom code to unpack binaries at execution time. This is differ-
ent from typical packers which generally rely on packed executables containing
code that is used to perform the inverse of the packing operation at runtime.
Instead of depending on custom code, the technique described in this paper uses
documented behavior of the dynamic loader as a mechanism for performing the
unpacking operation. This difference can make binaries packed using this tech-
nique more difficult to signature and analyze, but only when presented to an
untrained eye. The description of this technique is meant to be an example of a
fun thought exercise and not as some sort of revolutionary packer. In fact, it’s
been used in the virus world many years prior to this paper.

Thanks: The author would like to thank Skywing, spoonm, deft, intropy, Or-
lando Padilla, nemo, Richard Johnson, Rolf Rolles, Derek Soeder, and Andre
Protas for their discussions and feedback.

Challenge: Prior to reading this paper, the author recommends that the reader
attempt to determine the behavior of the packer that was used on the binary
included in the attached code sample. The binary itself is innocuous and just
performs a few simple printf operations.

Previous Research: This technique has been used in the virus world far in ad-
vance of this writing. Examples that apply this technique include W95/Resurrel
and W95/Silcer. Further research indicates that Peter Szor did a write-up on
this technique entitled “Tricky Relocations” in the April 2001 edition of Virus
Bulletin[2, 3].

1

Chapter 2

Locreate

Executable packers, such as UPX, are commonly employed by malware as a
means of delaying or otherwise thwarting the process of static analysis. Packers
also have perfectly legitimate uses, but these uses fall outside of the scope of this
paper. The reason packers make static analysis more difficult is because they
alter the form of the binary to the point that what appears on disk is entirely
different from what actually ends up executing in memory. This alteration is
typically accomplished by encapsulating a pre-existing binary in a “host” binary.
The algorithm used to encapsulate the pre-existing binary in the host binary is
what differs from one packer to the next. In most cases, the host binary must
contain code that will perform the inverse of the packing operation in order to
decapsulate the original binary. The code that is responsible for performing this
operation is typically referred to as an unpacker. The process of unpacking the
original binary is usually done entirely in memory without writing the original
version out to disk. Once the original binary is unpacked, execution control
is transferred to the original binary which begins executing as if nothing had
changed.

This general approach represents an easy way of altering the form of a binary
without changing its effective behavior. In fact, it’s pretty much analagous to
payload encoders that are used in conjunction with exploits to alter the form of
a payload in order to satisify some character restrictions without changing the
payload’s effective behavior. In the case of payload encoders, some arbitrary
code must be prefixed to the encoded payload in order to perform the inverse of
the encoding operation once the payload is executed. However, like payload en-
coders, the use of custom code to perform the inverse of the packing or encoding
operation can lead to a few problems.

The most apparent of these problems has to do with the fact that while the
packed form of an executable may be entirely different from its original, the

2

code used to perform the unpacking operation may be static. In the event that
the unpacker consists of static code, either in whole or in part, it may be possible
to signature or otherwise identify that a particular packing algorithm has been
used to produce a binary and thus make it easier to restore the original form of
the binary. This ability is especially important when it comes to attempting to
heuristically identify malware prior to allowing a user to execute it.

The use of custom code can also make it possible for tools to be developed
that attempt to identify unpackers based on their behavior. Ero Carrera has
provided some excellent illustrations relating to the feasibility of this type of
attack against unpackers[1]. An understanding of an unpacker’s behavior may
also make it possible to acquire the original binary without allowing it to actu-
ally execute by simply tracing the unpacker up until the point where it transfers
execution control to the original binary. In the case of malware, this weakness
means that benefits gained from packing an executable can be completely nul-
lified.

Both of these problems are meant to illustrate that even though custom un-
packing code is often a requirement, its mere presence exposes a potential point
of weakness. If it were possible to eliminate the custom code required to un-
pack a binary, it could make the two problems described previously much more
difficult to realize. To that point, the technique described in this paper does
not rely on the presence of custom code in a packed binary in order to unpack
itself. Instead, documented behavior of the dynamic loader is used to perform
the unpacking whenever the packed binary is executed. While this approach
has its benefits, there are a number of problems with it that will be discussed
later on. In the interest of brevity, the packer described in this paper will sim-
ply be referred to as locreate. As was already mentioned, locreate leverages a
documented feature of most dynamic loaders in order to perform its unpacking
operation. Given that the process of unpacking typically involves transforming
the original binary’s contents back into its original form, there are only a finite
number of dynamic loader features that might be abused. Perhaps the feature
that is best suited for transforming the contents of a binary at runtime is the
dynamic loader feature that was designed to do just that: relocations.

In the event that a binary is unable to be loaded at its preferred base address at
runtime, the dynamic loader is responsible for attempting to move the binary
to another location in memory. The act of moving a binary from its preferred
base address to a new base address is more commonly referred to as relocating.
When a binary is relocated to a new base address, any references the binary
might have to addresses that are relative to its preferred base address will no
longer be valid. As such, references that are relative to the preferred base address
must be updated by the dynamic loader in order to make them relative to the
new base address. Of course, this presupposes that the dynamic loader has
some knowledge of where in the binary these address references are made. To
satisfy this presupposition, binaries will typically include relocation information
to provide the dynamic loader with a map to the locations within the binary that

3

need to be adjusted. When a binary does not include relocation information, it’s
classified as a non-relocatable binary. Without relocation information, a binary
cannot be relocated to an alternate base address in an elegant manner (ignoring
position independent executables).

The structures used to convey relocation information differs from one binary
format to the next. For the purpose of this paper, only the structures used
to describe relocations of Portable Executable (PE) binaries will be discussed.
However, it should be noted that the approaches described in this paper should
be equally applicable to other binary formats, such as ELF1. The PE binary for-
mat conveys relocation information through one of the data directories that is in-
cluded within the optional header portion of the NT header. This data directory
is symbolically referred to through the use of the IMAGE DIRECTORY ENTRY BASERELOC.
The base relocation data directory consists of zero or more IMAGE BASE RELOCATION
structures which are defined as:

typedef struct _IMAGE_BASE_RELOCATION {
ULONG VirtualAddress;
ULONG SizeOfBlock;

// USHORT TypeOffset[1];
} IMAGE_BASE_RELOCATION, *PIMAGE_BASE_RELOCATION;

The base relocation data directory is a little bit different from most other data
directories. The IMAGE BASE RELOCATION structures embedded in the data di-
rectory do not occur immediately one after the other. Instead, there are a
variable number of USHORT sized fixup descriptors that separate each structure.
The SizeOfBlock attribute of each structure describes the entire size of a relo-
cation block. Each relocation block consists of the base relocation structure and
the variable number of fixup descriptors. Therefore, enumeration of the base
relocation data directory is best performed by using the SizeOfBlock attribute
of each structure to proceed to the next relocation block until none are remain-
ing. The VirtualAddress attribute of each relocation block is a page-aligned
relative virtual address (RVA) that is used as the base address when processing
its associated fixup descriptors. In this manner, each relocation block describes
the relocations that should be applied to exactly one page.

The fixup descriptors contained within a relocation block describe the address
of the value that should be transformed and the method that should be used to
transform it. The PE format describes about 10 different transformations that
can be used to fixup an address reference. These transformations are conveyed
through the top 4 bits of each fixup descriptor. The bottom 12 bits are used
to describe the offset into the VirtualAddress of the containing relocation
block. Adding the bottom 12 bits of a fixup descriptor to the VirtualAddress

1In fact, other binary formats make the technique used by locreate even easier. For ex-
ample, ELF supports applying relocation fixups with an addend. This addend is basically an
arbitrary value that is used in conjunction with a transformation.

4

of a relocation block produces the RVA that contains a value that needs to be
transformed. Of the transformation methods that exist, the one most commonly
used on x86 is IMAGE REL BASED HIGHLOW, or 3. This transformation dictates
that the 32-bit displacement between the original base address and the new
base address should be added to the value that exists at the RVA described by
the fixup descriptor. The act of adding the displacement means that the value
will be transformed to make it relative to the new base address rather than the
original base address. To better understand how all of these things tie together,
consider the following source code example:

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char **argv)

{

printf("Hello World.\n");

return 0;

}

When compiled down, this function appears as the following:

sample!main:

00401010 55 push ebp

00401011 8bec mov ebp,esp

00401013 6800104200 push offset sample!__rtc_tzz <PERF> (sample+0x21000) (00421000)

00401018 e80c000000 call sample!printf (00401029)

0040101d 83c404 add esp,4

00401020 33c0 xor eax,eax

00401022 5d pop ebp

00401023 c3 ret

At address 0x00401013, main pushes the address of the string that contains
“Hello World!”:

0:000> db 00421000 L 10

00421000 48 65 6c 6c 6f 20 57 6f-72 6c 64 2e 0a 00 00 00 Hello World.....

In this case, the push instruction is referring to the string using an absolute
address. If the sample executable must be relocated at runtime, the dynamic
loader must be provided with the relocation information necessary to fixup the
reference to the absolute address. The dumpbin.exe utility from Visual Studio
can be used to confirm that this information exists. The first requirement is
that the binary must have relocation information. By default, all DLLs will
contain relocation information, but executables typically do not. Executables
can be compiled with relocation information by using the /fixed:no linker
flag. When a binary is compiled with relocations, the presence of relocation

5

information is simply indicated by a non-zero VirtualAddress and Size for
the base relocation data directory. These values can be determined through
dumpbin.exe /headers:

26000 [EE8] RVA [size] of Base Relocation Directory

Since relocation information must be present at runtime, there should also be a
section, typically named .reloc, that contains the virtual mapping information
for the relocation information:

SECTION HEADER #5

.reloc name

1165 virtual size

26000 virtual address (00426000 to 00427164)

2000 size of raw data

24000 file pointer to raw data (00024000 to 00025FFF)

0 file pointer to relocation table

0 file pointer to line numbers

0 number of relocations

0 number of line numbers

42000040 flags

Initialized Data

Discardable

Read Only

In order to validate that this executable contains relocation information for the
absolute address reference made to the “Hello World!” string, the dumpbin.exe
/relocations command can be used:

File Type: EXECUTABLE IMAGE

BASE RELOCATIONS #5

1000 RVA, A8 SizeOfBlock

14 HIGHLOW 00421000

2C HIGHLOW 00420350

...

This output shows the first relocation block which describes the RVA 0x1000.
Each line below the relocation block header describes the individual fixup de-
scriptors. The information displayed includes the offset into the page, the type
of transformation being performed, and the current value at that location in the
binary. From the disassembly above, the location of the address reference that
is being made is 0x00401014. Therefore, the very first fixup in this relocation
block provides the dynamic loader within the information necessary to change
the address reference to the new base address when the binary is relocated. If
this binary were to be relocated to 0x50000000, the HIGHLOW transforma-
tion would be applied to 0x00401014 as follows. The displacement between
the new base address and the old address would be calculated as 0x50000000

6

- 0x00400000, or 0x4fc00000. Adding 0x4fc00000 to the existing value of
0x00421000 produces 0x50021000 which is subsequently stored in 0x00401014.
This causes the absolute address reference to become relative to the new base
address.

Based on this basic understanding of how relocations are processed, it’s now
possible to describe how a packer can be implemented that takes advantage of
the way the dynamic loader processes relocation information. As has been il-
lustrated above, relocation information is designed to make it possible to fixup
absolute address references at runtime when a binary is relocated. These fix-
ups are applied by taking into account the displacement between the new base
address and the original base address. More often than not, this displacement
isn’t known ahead of time, thus making it impossible to reliably predict how
the content at a specific location in the binary will be altered. But what if it
were possible to deterministically know the displacement in advance? Knowing
the displacement in advance would make it possible to alter various locations
of the binary in a manner that would permit the original values to be restored
by relocations at runtime. In effect, the on-disk version of the binary could be
made to appear quite different from the in-memory version at runtime. This is
the basic concept behind locreate.

In order for locreate to work it must be possible to predict the displacement
reliably. Since the displacement is calculated in relation to the preferred base
address and the expected base address, both values must be known. Furthermore,
the binary must be relocated every time it executes in order for the relocations to
be applied. As it happens, both of these problems can be solved at once. Since
a binary is only guaranteed to be relocated if its preferred base address is in
conflict with an existing address, a preferred base address must be selected that
will always lead to a conflict. This can be accomplished by setting the preferred
base address to any invalid user-mode address (any address above 0x80000000
inclusive)2. Alternatively, the base address can be set to SharedUserData which
is guaranteed to be located at 0x7ffe0000 in every process. Setting the binary’s
preferred base address to any of these addresses will force it to be relocated every
time it executes. The only unknown is what address the binary is expected to
be relocated to.

Determining the address that will be relocated to depends on the state of the
process’ address space at the time that the binary is relocated. If the binary
that’s being relocated is an executable, then the process’ address space is gen-
erally in a pristine state since the executable is one of the first things to be
mapped into the address space. As such, the first available address will always
be 0x10000 on default installations of Windows. If the binary is a DLL, it’s
hard to predict what the state of the address space will be in all cases. When
a conflict does occur, the kernel searches for an available address region by

2This assumes that the machine that the executable will run on is not running with /3GB.
If so, a higher address would have to be used.

7

traversing from lowest to highest address. For the purposes of this paper, it
will be assumed that an executable is being packed and that the address being
relocated to is 0x10000. Further research may provide insight into how to better
control or alter the expected base address.

With both the preferred base address and the expected base address known,
the only thing that remains is to perform the operations that will transform
the on-disk version of the binary in a manner that causes custom relocations
to restore the binary to its original form at runtime. This process can be both
simplistic and complicated. The simplest approach would be to enumerate over
the contents of each section in the binary, altering the value at each location by
subtracting the displacement and then creating a relocation fixup descriptor that
will ensure that the contents are restored to the expected value at runtime. This
is how the proof of concept works. A more complicated approach would be to
create multiple relocation fixup descriptors per-address. This would mean that
the displacement would need to be subtracted once for each fixup descriptor.
It should also be possible to apply relocations to individual bytes within a four
byte span rather than applying relocations in four byte increments. Even more
interesting would be to use some fixup types other than HIGHLOW, although
this could be seen as something that might make generating a signature easier.

The end result of this whole process is a functional proof of concept that packs a
binary in the manner described above. To get a feel for how different the binary
looks after being packed, consider what the implementation of main from earlier
in this paper looks like. Notice how the first two instructions are the same as
they were previously. This has to do with the fact that base addresses must
align on 64KB boundaries, and thus the lower two bottoms are not changed.
This could be further improved such as through the strategies described above:

.text:84011000 loc_84011000:

.text:84011000 push ebp

.text:84011001 mov ebp, esp

.text:84011003 in al, dx

.text:84011004 add [eax+0], dh

.text:84011006 add [edi+edi*8+1209C15h], eax

.text:8401100D test [ebx-3FCCFB3Ch], al

.text:84011013 loope near ptr 84010FD8h

.text:84011015

.text:84011015 loc_84011015:

.text:84011015 push (offset off_8401139C+1)

The locreate proof of concept has been tested on Windows XP and Windows
2003 Server. Initial testing on Windows Vista indicates that Vista does not
properly alter the entry point address after relocations have been applied when
an executable is packed. Even though the proof of concept implementation
works, there are a number of more fundamental problems with the technique
itself.

The first set of problems has to do with techniques that can be used to signature

8

locreate packed executables. Since locreate relies on injecting a large number of
relocation fixups, it may be possible to heuristically detect an increased num-
ber of relocation fixups with relation to the size of individual segments. This
particular attack could be solved by decreasing the number of relocation fixups
injected by locreate. This would have the effect of only partially mangling the
binary, but it might be enough to make people wonder what’s going on with-
out giving things away. Even if it weren’t possible to heuristically detect an
increased number of relocation fixups, it’s definitely possible to detect the fact
that an executable packed by locreate will have an invalid preferred base address
that will always result in a conflict. This fact alone makes it mostly trivial to
at least detect that something odd is going on.

Detection is only the first problem, however. Once a locreate packed executable
has been detected, the next logical step is to attempt to figure out some way
of obtaining the original executable. Since locreate relies on relocation fixups
to do this, the only thing one would have to do in order to obtain the original
binary would be to relocate the executable to the expected base address that
was used when the binary was packed, such as 0x10000. While it’s trivial to
develop tools to perform this action, the Interactive Disassembler (IDA) already
supports it. When opening an executable, the “Manual Load” checkbox can be
toggled. This will cause IDA to prompt the user to enter the base address that
the binary should be loaded at. When the base address is entered, IDA processes
relocations and presents the relocated binary image. The mitigating factor here
is that the user must know the expected base address, otherwise the binary will
still appear completely mangled when it’s relocated to the wrong base address.

In the author’s opinion, these problems make locreate a sub-par packer. At
best it should be viewed as an interesting approach to the problem of packing
executables, but it should not be relied upon as a means of thwarting static
analysis. Anyone who reads this paper will have the tools necessary to unpack
executables that have been packed by locreate. With that said, it should be
noted that there is still an opportunity for further research that could help to
identify ways of improving locreate. For instance, a better understanding of
differences in the way the dynamic loader and existing static analysis tools pro-
cess relocation fixups could provide some opportunity for improvement. Results
from some of the author’s initial tests of these ideas are included in appendix
A. Here’s a brief list of some differences that could exist:

1. Different behaviors when processing fixups

It’s possible that the dynamic loader and static analysis tools such as IDA
may not support the same set of fixup types. Furthermore, they may not
process fixup types in the same way. If differences do exist, it may be
possible to create a packed executable that will work correctly when used
against the dynamic loader but not render properly when relocated using
a static analysis tool such as IDA.

9

2. Relocation blocks with non-page-aligned VirtualAddress fields

It’s unknown whether or not the dynamic loader and static analysis tools
are able to properly handle relocation blocks that have non-page-aligned
VirtualAddress fields. In all normal circumstances, VirtualAddress will
be page aligned.

3. Relocation blocks that modify other relocation blocks

An interesting situation that may lead to differences between the dynamic
loader and static analysis tools has to do with relocation blocks that mod-
ify other relocation blocks. In this way, the relocation information that
exists on disk is not what is actually used, in its entirety, when relocating
an image during runtime.

Even if research into these topics doesn’t yield any direct improvements to
locreate, it should nonetheless provide some interesting insight into the way
that different applications handle relocation processing. And after all, gaining
knowledge is what it’s really all about.

10

Appendix A

Differences in Relocation
Processing

This appendix attempts to describe some tests that were run on different ap-
plications that process relocation entries for binary files. Identifying differences
may make it possible to have a binary that will work correctly when executed
but not when analyzed by a static analysis tool such as IDA. To test out these
ideas, the author threw together a small relocation fuzzing tool that is aptly
named relocfuzz. This tool will take a pre-existing binary and create a new one
with custom relocations. The code for this tool can be found in the other code
associated with this paper.

The tests included in this appendix were performed against three different appli-
cations: the dynamic loader (ntdll.dll), IDA, and dumpbin. If the same tests
are run against other applications, the author would be interested in knowing
the results.

A.1 Non-page-aligned Block VirtualAddress

In all normal cases, relocation blocks will be created with a page-aligned VirtualAddress.
However, it’s unclear if non-page-aligned VirtualAddress’s will be handled cor-
rectly when relocations are processed. There are some interesting implications
of non-page-aligned VirtualAddress’s. In many applications, such as the dy-
namic loader, it’s critical that addresses referenced through RVAs are validated
so as to prevent references being made to external addresses. For example, if
relocations were processed in kernel-mode, it would be critical that checks be
performed to ensure that RVAs don’t end up making it possible to reference
kernel-mode addresses. The reason why non-page-aligned VirtualAddress’s

11

are interesting is because they leave open the possibility of this type of attack.

Consider the scenario of a binary that is relocated to 0x7ffe0000, ignoring for
the moment that SharedUserData already exists at this location. Now, consider
that this binary has a relocation block with a virtual address of 0x1ffff. This
address is not page-aligned. Now, consider that this relocation block has a fixup
descriptor that indicates that at offset 0x4 into this page, a certain type of fixup
should be performed. This would equate to modifying memory at 0x80000003,
a kernel-mode address. If relocations were being processed in kernel-mode, like
they are on Windows Vista for ASLR, then a failure to check that the actual
address being written to would result in a dangerous condition.

Here’s an example of some code that attempts to test out this idea:

static VOID TestNonPageAlignedBlocks(

__in PPE_IMAGE Image,

__in PRELOC_FUZZ_CONTEXT FuzzContext)

{

PRELOCATION_BLOCK_CONTEXT KillerBlock = AllocateRelocationBlockContext(1);

PrependRelocationBlockContext(

FuzzContext,

KillerBlock);

KillerBlock->Rva = 0x10001;

KillerBlock->Fixups[0] = (3 << 12) | 0;

}

In this example, a custom relocation block is created with one fixup descriptor.
The VirtualAddress associated with the block is set to 0x10001 and the first
fixup descriptor is set to modify offset 0 into that RVA. If the binary that
is hosting these relocations is relocated to 0x10000, a write should occur to
0x20001 when processing the relocations. Here are the results from a few initial
tests:

Application Results
ntdll.dll The relocation fixup is processed and results in a

write to 0x20001.
IDA Ignores the relocation fixup, but only because

it writes outside of the executable from what it
would appear.

dumpbin.exe Parses the relocation block without issue.

A.2 Writing to External Addresses

Due to the fact that the VirtualAddress associated with each relocation block
is a 32-bit RVA, it is possible to create relocation blocks that have RVAs that

12

actually reside outside of the mapped executable that is being relocated. This is
important because if steps aren’t taken to detect this scenario, the application
processing the relocation fixups might be tricked into writing to memory that is
external to the mapped binary. Creating a test-case for this example is trivial:

static VOID CreateExternalWriteRelocationBlock(

__in PPE_IMAGE Image,

__in PRELOC_FUZZ_CONTEXT FuzzContext)

{

PRELOCATION_BLOCK_CONTEXT ExtBlock = AllocateRelocationBlockContext(2);

ExtBlock->Rva = 0x10000;

ExtBlock->Fixups[0] = (3 << 12) | 0x0;

ExtBlock->Fixups[1] = (3 << 12) | 0x1;

PrependRelocationBlockContext(

FuzzContext,

ExtBlock);

}

In this test, a relocation block is created that has a VirtualAddress of 0x10000.
When the binary is relocated to 0x10000, the actual address of the region that
will be written to is 0x20000. In almost all versions of Windows NT, this address
is the location of the process parameters structure. The block itself contains
two fixup descriptors, each of which will result in a write to the first few bytes
of the process parameters structure. The results after running this test are:

Application Results
ntdll.dll The relocation fixup is processed and results in

two 32-bit writes to 0x20000 and 0x20001.
IDA Ignores RVAs outside of the executable.
dumpbin.exe N/A, dumpbin doesn’t actually perform relocation

fixups.

A.3 Self-updating Relocation Blocks

One of the more interesting nuisances about the way relocation fixups are pro-
cessed is that it’s actually possible to create a relocation block that will perform
fixups against other relocation blocks. This has the effect of making it such
that the relocation information that appears on disk is actually different than
what is processed when relocation fixups are applied. The basic idea behind
this approach is to prepend certain relocation blocks that apply fixups to subse-
quent relocation blocks. This all works because relocation blocks are typically
processed in the order that they appear. An example of this basic concept is
described shown below:

13

static VOID PrependSelfUpdatingRelocations(

__in PPE_IMAGE Image,

__in PRELOC_FUZZ_CONTEXT FuzzContext)

{

PRELOCATION_BLOCK_CONTEXT SelfBlock;

PRELOCATION_BLOCK_CONTEXT RealBlock;

ULONG RelocBaseRva;

ULONG NumberOfBlocks = FuzzContext->NumberOfBlocks;

ULONG Count;

//

// Grab the base address that relocations will be loaded at

//

RelocBaseRva = FuzzContext->BaseRelocationSection->VirtualAddress;

//

// Grab the first block before we start prepending

//

RealBlock = FuzzContext->NewRelocationBlocks;

//

// Prepend self-updating relocation blocks for each block that exists

//

for (Count = 0; Count < NumberOfBlocks; Count++)

{

PRELOCATION_BLOCK_CONTEXT RelocationBlock;

RelocationBlock = AllocateRelocationBlockContext(2);

PrependRelocationBlockContext(

FuzzContext,

RelocationBlock);

}

//

// Walk through each self updating block, fixing up the real blocks to

// account for the amount of displacement that will be added to their Rva

// attributes.

//

for (SelfBlock = FuzzContext->NewRelocationBlocks, Count = 0;

Count < NumberOfBlocks;

Count++, SelfBlock = SelfBlock->Next, RealBlock = RealBlock->Next)

{

SelfBlock->Rva = RelocBaseRva + RealBlock->RelocOffset;

//

// We’ll relocate the two least significant bytes of the real block’s RVA

// and SizeOfBlock.

//

SelfBlock->Fixups[0] = (USHORT)((IMAGE_REL_BASED_HIGHLOW << 12) |

(((RealBlock->RelocOffset - 2) & 0xfff)));

SelfBlock->Fixups[1] = (USHORT)((IMAGE_REL_BASED_HIGHLOW << 12) |

(((RealBlock->RelocOffset + 2) & 0xfff)));

SelfBlock->Rva &= ~(PAGE_SIZE-1);

//

// Account for the amount that will be added by the dynamic loader after

14

// the first self-updating relocation blocks are processed.

//

*(PUSHORT)(&RealBlock->Rva) -= (USHORT)(FuzzContext->Displacement >> 16) + 2;

*(PUSHORT)(&RealBlock->SizeOfBlock) -= (USHORT)(FuzzContext->Displacement >> 16) + 2;

}

}

This test works by prepending a self-updating relocation block for each relo-
cation block that exists in the binary. In this way, if there were two reloca-
tions blocks that already existed, two self-updating relocation blocks would be
prepended, one for each of the two existing relocation blocks. Following that,
the self-updating relocation blocks are populated. Each self-updating relocation
block is created with two fixup descriptors. These fixup descriptors are used to
apply fixups to the VirtualAddress and SizeOfBlock attributes of its corre-
sponding existing relocation block. Since a HIGHLOW fixup only applies to two
most significant bytes, the RVAs of the corresponding fields are adjusted down
by two. The end result of this operation is that the first n relocation blocks
are responsible for fixing up the VirtualAddress and SizeOfBlock attributes
associated with subsequent relocation blocks. When relocations are processed
in a linear fashion, the subsequent relocation blocks are updated in a way that
allows them to be processed correctly.

Running this test against the set of test applications produces the following
results:

15

Application Results
ntdll.dll The relocation blocks are fixed up accordingly and

the application executes as expected.
IDA Initial testing indicates that IDA is capable of han-

dling self-updating relocation blocks.
dumpbin.exe Crashes as the result of apparently corrupt relo-

cation blocks:

DUMPBIN : fatal error LNK1000:

Internal error during

DumpBaseRelocations

Version 8.00.50727.42

ExceptionCode = C0000005

ExceptionFlags = 00000000

ExceptionAddress = 00443334

NumberParameters = 00000002

ExceptionInformation[0] = 00000000

ExceptionInformation[1] = 7FFA2000

CONTEXT:

Eax = 0000000A Esp = 0012E500

Ebx = 00004F00 Ebp = 00000000

Ecx = 7FFA2000 Esi = 00000000

Edx = 781C3B68 Edi = 7FFA2000

Eip = 00443334 EFlags = 00010293

SegCs = 0000001B SegDs = 00000023

SegSs = 00000023 SegEs = 00000023

SegFs = 0000003B SegGs = 00000000

Dr0 = 00000000 Dr3 = 00000000

Dr1 = 00000000 Dr6 = 00000000

Dr2 = 00000000 Dr7 = 00000000

A.4 Integer Overflows in Size Calculations

A potential source of mistakes that could be made when processing relocations
has to do with the handling of the SizeOfBlock attribute of a relocation block.
There is a potential for an integer overflow to occur in applications that don’t
properly handle situations where the SizeOfBlock attribute is less than the
size of the base relocation structure (which is 8 bytes). In order to calculate
the total number of fixups in a section, it’s common to see a calculation like
(Block->SizeOfBlock - 8) / 2. However, if a check isn’t made to ensure that
SizeOfBlock is at least 8, an integer overflow will occur. If this happens, the
application processing relocations would be tricked into processing a very large
number of relocations. An example of a test for this issue is shown below:

static VOID TestIntegerOverflow(

16

__in PPE_IMAGE Image,

__in PRELOC_FUZZ_CONTEXT FuzzContext)

{

PRELOCATION_BLOCK_CONTEXT EvilBlock = AllocateRelocationBlockContext(0);

EvilBlock->SizeOfBlock = 0;

EvilBlock->Rva = 0x1000;

PrependRelocationBlockContext(

FuzzContext,

EvilBlock);

}

In this example, a relocation block is created that has its SizeOfBlock attribute
set to zero. This is invalid because the minimum size of a block is 8 bytes. The
results of this test against different applications are shown below:

Application Results
ntdll.dll Does not perform appropriate checks which appears to result in an integer overflow:

(9d4.6dc): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00000000 ebx=00014008 ecx=00011000 edx=80010000 esi=00015000 edi=ffffffff

eip=7c91e163 esp=0013fa98 ebp=0013faac iopl=0 nv up ei pl nz na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010206

ntdll!LdrProcessRelocationBlockLongLong+0x1a:

7c91e163 0fb706 movzx eax,word ptr [esi] ds:0023:00015000=????

IDA Ignores the relocation block, but may not process relocations correctly as a result
(unclear at this point).

dumpbin.exe Refuses to show relocations:

Microsoft (R) COFF/PE Dumper Version 8.00.50727.42

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file foo.exe

File Type: EXECUTABLE IMAGE

BASE RELOCATIONS #4

Summary

1000 .data

1000 .rdata

1000 .reloc

1000 .text

17

A.5 Consistent Handling of Fixup Types

Applications that process relocation fixups may also differ in their level of sup-
port for different types of fixups. While most binaries today use the HIGHLOW
fixup exclusively, there are still quite a few other types of fixups that can be ap-
plied. If differences in the way relocation fixups are processed can be identified,
it may be possible to create a binary that relocates correctly in one application
but not in another application. The following code demonstrates an example of
this type of test:

static VOID TestConsistentRelocations(

__in PPE_IMAGE Image,

__in PRELOC_FUZZ_CONTEXT FuzzContext)

{

PRELOCATION_BLOCK_CONTEXT Block = AllocateRelocationBlockContext(16);

ULONG Rva = FuzzContext->BaseRelocationSection->VirtualAddress;

INT Index;

PrependRelocationBlockContext(

FuzzContext,

Block);

Block->Rva = 0x1000;

for (Index = 0; Index < 16; Index++)

{

//

// Skip invalid fixup types

//

if ((Index >= 6 && Index <= 8) ||

(Index >= 0xb && Index <= 0x10))

continue;

Block->Fixups[Index] = (Index << 12) | Index;

}

}

This test works by prepending a relocation block that contains a relocation fixup
for each different valid fixup type. This results in a relocation block that looks
something like this:

BASE RELOCATIONS #4

1000 RVA, 28 SizeOfBlock

0 ABS

1 HIGH EC8B

2 LOW 8BEC

3 HIGHLOW 5008458B

4 HIGHADJ 0845 (5005)

0 ABS

0 ABS

0 ABS

9 IMM64

18

A DIR64 8000209C15FF8000

0 ABS

0 ABS

0 ABS

0 ABS

0 ABS

The results for this test are shown below:

Application Results
ntdll.dll While not confirmed, it is assumed that the dynamic loader performs all fixup types

correctly. This results in the following code being produced in the test binary:

foo+0x1000:

00011000 55 push ebp

00011001 8c6c8b46 mov word ptr [ebx+ecx*4+46h],gs

00011005 895068 mov dword ptr [eax+68h],edx

00011008 1830 sbb byte ptr [eax],dh

0001100a 0100 add dword ptr [eax],eax

0001100c 00b69b200100 add byte ptr foo+0x209b (0001209b)[esi],dh

00011012 83c408 add esp,8

IDA Appears to handle some relocation fixup types differently than the dynamic loader.
The result of IDA relocating the same binary results in the following being produced:

.text:00011000 push ebp

.text:00011001 mov ebp, esp

.text:00011003 mov eax, [ebp+9]

.text:00011006 shr byte ptr [eax+18h], 1 ; "Called TestFunction()\n"

.text:00011009 xor [ecx], al

.text:00011009

.text:0001100B db 0

.text:0001100C

.text:0001100C add byte ptr ds:printf[esi], dl

.text:00011012 add esp, 8

Equates to:

.text:00011000 55 8B EC 8B 45 09 D0 68 18 30 01 00 00 96 9C 20

.text:00011010 01 00 83 C4 08 C7 05 50

dumpbin.exe N/A, dumpbin doesn’t actually perform relocation fixups.

A.6 Hijacking the Dynamic Loader

Since the dynamic loader in previous tests proved to be capable of writing to
areas of memory external to the executable binary, it makes sense to test to
see if it’s possible to hijack execution control. One method of approaching this
would be to have the dynamic loader apply a relocation to the return address

19

of the function used to process relocations. When the function returns, it’ll
transfer control to whatever address the relocations have caused it to point to.
An example of this code for this test is shown below:

static VOID TestHijackLoader(

__in PPE_IMAGE Image,

__in PRELOC_FUZZ_CONTEXT FuzzContext)

{

PRELOCATION_BLOCK_CONTEXT Block = AllocateRelocationBlockContext(1);

PrependRelocationBlockContext(

FuzzContext,

Block);

//

// Set the RVA to the address of the return address on the stack taking into

// account the displacement.

//

Block->Rva = 0x0012fab0;

Block->Fixups[0] = (3 << 12) | 0;

}

When a binary is executed that contains this relocation block, the dynamic
loader ends up applying a relocation to the return address located at 0x13fab0.
Obviously, this address may be subject to change quite frequently, but as a
means of illustrating a proof of concept it should be sufficient. And, just as one
would expect, the dynamic loader does indeed overwrite the return address and
make it possible to gain control of execution:

(c88.184): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0001400a ebx=00014008 ecx=0013fab0 edx=80010000 esi=00000001

edi=ffffffff eip=fc92e10b esp=0013fac8 ebp=0013fae4 iopl=0 nv up ei pl zr na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010246

fc92e10b ?? ???

0:000> kv

ChildEBP RetAddr Args to Child

WARNING: Frame IP not in any known module. Following frames may be wrong.

0013fac4 00010000 00261f18 7ffdc000 80010000 0xfc92e10b

0013fae4 7c91e08c 00010000 00000000 00000000 image00010000

0013fb08 7c93ecd3 00010000 7c93f584 00000000 ntdll!LdrRelocateImage+0x1d (FPO: [Non-Fpo])

0013fc94 7c921639 0013fd30 7c900000 0013fce0 ntdll!LdrpInitializeProcess+0xea0 (FPO: [Non-Fpo])

0013fd1c 7c90eac7 0013fd30 7c900000 00000000 ntdll!_LdrpInitialize+0x183 (FPO: [Non-Fpo])

00000000 00000000 00000000 00000000 00000000 ntdll!KiUserApcDispatcher+0x7

20

Bibliography

[1] Carrera, Ero. Packer Tracing.
http://nzight.blogspot.com/2006/06/packer-tracing.html; ac-
cessed Dec 15, 2006.

[2] Szor, Peter. Advanced Code Evolution Techniques and Computer Virus
Generator Kits.
http://www.informit.com/articles/article.asp?p=366890&seqNum=
3&rl=1; accessed Jan 8, 2007.

[3] Szor, Peter. Tricky Relocations.
http://peterszor.com/resurrel.pdf; accessed Jan 11, 2007.

21

http://nzight.blogspot.com/2006/06/packer-tracing.html
http://www.informit.com/articles/article.asp?p=366890&seqNum=3&rl=1
http://www.informit.com/articles/article.asp?p=366890&seqNum=3&rl=1
http://peterszor.com/resurrel.pdf

	Foreword
	Locreate
	Differences in Relocation Processing
	Non-page-aligned Block VirtualAddress
	Writing to External Addresses
	Self-updating Relocation Blocks
	Integer Overflows in Size Calculations
	Consistent Handling of Fixup Types
	Hijacking the Dynamic Loader

