
FUTo

Peter Silberman, C.H.A.O.S.

12/2005

Contents

1 Foreword 2

2 Introduction 3

3 Blacklight 4
3.1 Windows OpenProcess . 5
3.2 The PspCidTable . 7

4 FUTo 9

5 Conclusion 12

1

Chapter 1

Foreword

Abstract:

Since the introduction of FU[2], the rootkit world has moved away from imple-
menting system hooks to hide their presence. Because of this change in offense,
a new defense had to be developed. The new algorithms used by rootkit detec-
tors, such as BlackLight[1], attempt to find what the rootkit is hiding instead
of simply detecting the presence of the rootkits hooks. This paper will discuss
an algorithm that is used by both Blacklight and IceSword[3] to detect hidden
processes. This paper will also document current weaknesses in the rootkit de-
tection field and introduce a more complete stealth technique implemented as
a prototype in FUTo.

Thanks:

Peter: would like to thank bugcheck, skape, thief, pedram, F-Secure for doing
great research, and all the nologin/research’ers who encourage mind growth.

C.H.A.O.S.: would like to thank Amy, Santa (this work was three hours on
Christmas day), lonerancher, Pedram, valerino, and HBG Unit.

2

Chapter 2

Introduction

In the past year or two, there have been several major developments in the
rootkit world. Recent milestones include the introduction of the FU rootkit,
which uses Direct Kernel Object Manipulation (DKOM); the introduction of
VICE, one of the first rootkit detection programs; the birth of Sysinternals
Rootkit Revealer and F-Secures Blacklight, the first mainstream Windows rootkit
detection tools; and most recently the introduction of Shadow Walker, a rootkit
that hooks the memory manager to hide in plain sight.

Enter Blacklight and IceSword. The authors chose to investigate the algo-
rithms used by both Blacklight and IceSword because they are considered by
many in the field to be the best detection tools. Blacklight, developed by the
Finnish security company F-Secure, is primarily concerned with detecting hid-
den processes. It does not attempt to detect system hooks; it is only concerned
with hidden processes. IceSword uses a very similar method to Blacklight.
IceSword differentiates itself from Blacklight in that it is a more robust tool
allowing the user to see what system calls are hooked, what drivers are hidden,
and what TCP/UDP ports are open that programs, such as netstat, do not.

3

Chapter 3

Blacklight

This paper will focus primarily on Blacklight due to its algorithm being the
research focus for this paper. Also, it became apparent after researching Black-
light that IceSword used a very similiar algorithm. Therefore, if a weakness was
found in Blacklight, it would most likely exist in IceSword as well.

Blacklight takes a userland approach to detecting processes. Although sim-
plistic, its algorithm is amazingly effective. Blacklight uses some very strong
anti-debugging features that begin by creating a Thread Local Storage (TLS)
callback table. Blacklights TLS callback attempts to befuddle debuggers by
forking the main process before the process object is fully created. This can oc-
cur because the TLS callback routine is called before the process is completely
initialized. Blacklight also has anti-debugging measures that detect the presence
of debuggers attaching to it. Rather than attempting to beat the anti-debugging
measures by circumventing the TLS callback and making other program mod-
ifications, the authors decided to just disable the TLS routine. To do this, the
authors used a tool called LordPE[4]. LordPE allows users to edit PE files.
The authors used this tool to zero out the TLS callback table. This disabled
the forking routine and gave the authors the ability to use an API Monitor. It
should be noted that disabling the callback routine would allow you to attach
a debugger, but when the user clicked ”scan” in the Blacklight GUI Blacklight
would detect the debugger and exit. Instead of working up a second measure
to circumvent the anti-debugging routines, the authors decided to analyze the
calls occuring within Blacklight. To this end, the authors used Rohitabs API
Monitor[6]. Figure 3 shows the API calls made when Blacklight is searching for
hidden processes.

In figure 3, notice the failed calls to the API OpenProcess (tls zero is Blacklight
without a TLS table). Blacklight tries opening a process with process id (PID)
of 0x1CC, 0x1D0, 0x1D4, 0x1D8 and so on. The authors dubbed the method

4

Figure 3.1: Output of Blacklight API calls

Blacklight uses as PID Bruteforce (PIDB). Blacklight loops through all possible
PIDS calling OpenProcess on the PIDs in the range of 0x0 to 0x4E1C. Black-
light keeps a list of all processes it is able to open, using the PIDB method.
Blacklight then calls CreateToolhelp32Snapshot, which gives Blacklight a sec-
ond list of processes. Blacklight then compares the two lists, to see if there are
any processes in the PIDB list that are not in the list returned by the Create-
Toolhelp32Snapshot function. If there is any discrepancy, these processes are
considered hidden and reported to the user.

3.1 Windows OpenProcess

In Windows, the OpenProcess function is a wrapper to the NtOpenProcess rou-
tine. NtOpenProcess is implemented in the kernel by NTOSKRNL.EXE. The
function prototype for NtOpenProcess is:

NTSTATUS NtOpenProcess (
OUT PHANDLE ProcessHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN PCLIENT_ID ClientId OPTIONAL)

The ClientId parameter is the actual PID that is passed by OpenProcess. This
parameter is optional, but during our observation the OpenProcess function
always specified a ClientId when calling NtOpenProcess.

NtOpenProcess performs three primary functions:

1. It verifies the process exists by calling PsLookupProcessByProcessId.

5

2. It attempts to open a handle to the process by calling ObOpenObjectBy-
Pointer.

3. If it was successful opening a handle to the process, it passes the handle
back to the caller.

PsLookupProcessByProcessId was the next obvious place for research. One of
the outstanding questions was how does PsLookupProcessByProcessId know that
a given PID is part of a valid process? The answer becomes clear in the first
few lines of the disassembly:

PsLookupProcessByProcessId:
mov edi, edi
push ebp
mov ebp, esp
push ebx
push esi
mov eax, large fs:124h
push [ebp+arg_4]
mov esi, eax
dec dword ptr [esi+0D4h]
push PspCidTable
call ExMapHandleToPointer

From the above disassembly, it is clear that ExMapHandleToPointer queries the
PspCidTable for the process ID.

Now we have a complete picture of how Blacklight detects hidden processes:

1. Blacklight starts looping through the range of valid process IDs, 0 through
0x41DC.

2. Blacklight calls OpenProcess on every possible PID.

3. OpenProcess calls NtOpenProcess.

4. NtOpenProcess calls PsLookupProcessByProcessId to verify the process
exists.

5. PsLookupProcessByProcessId uses the PspCidTable to verify the processes
exists.

6. NtOpenProcess calls ObOpenObjectByPointer to get the handle to the
process.

7. If OpenProcess was successful, Blacklight stores the information about the
process and continues to loop.

6

8. Once the process list has been created by exhausting all possible PIDs.
Blacklight compares the PIDB list with the list it creates by calling Cre-
ateToolhelp32Snapshot. CreateToolhelp32Snapshot is a Win32 API that
takes a snapshot of all running processes on the system. A discrepancy
between the two lists implies that there is a hidden process. This case is
reported by Blacklight.

3.2 The PspCidTable

The PspCidTable is a ”handle table for process and thread client IDs”[7]. Every
process’ PID corresponds to its location in the PspCidTable. The PspCidTable
is a pointer to a HANDLE TABLE structure.

typedef struct _HANDLE_TABLE {
PVOID p_hTable;
PEPROCESS QuotaProcess;
PVOID UniqueProcessId;
EX_PUSH_LOCK HandleTableLock [4];
LIST_ENTRY HandleTableList;
EX_PUSH_LOCK HandleContentionEvent;
PHANDLE_TRACE_DEBUG_INFO DebugInfo;
DWORD ExtraInfoPages;
DWORD FirstFree;
DWORD LastFree;
DWORD NextHandleNeedingPool;
DWORD HandleCount;
DWORD Flags;

}

Windows offers a variety of non-exported functions to manipulate and retrieve
information from the PspCidTable. These include:

ExCreateHandleTable creates non-process handle tables. The objects within
all handle tables except the PspCidTable are pointers to object headers
and not the address of the objects themselves.

ExDupHandleTable is called when spawning a process.

ExSweepHandleTable is used for process rundown.

ExDestroyHandleTable is called when a process is exiting.

ExCreateHandle creates new handle table entries.

ExChangeHandle is used to change the access mask on a handle.

7

ExDestroyHandle implements the functionality of CloseHandle.

ExMapHandleToPointer returns the address of the object corresponding to
the handle.

ExReferenceHandleDebugIn tracing handles.

ExSnapShotHandleTables is used for handle searchers (for example in oh.exe).

Below is code that uses non-exported functions to remove a process object from
the PspCidTable. It uses hardcoded addresses for the non-exported functions
necessary; however, a rootkit could find these function addresses dynamically.

typedef PHANDLE_TABLE_ENTRY (*ExMapHandleToPointerFUNC)

(IN PHANDLE_TABLE HandleTable,

IN HANDLE ProcessId);

void HideFromBlacklight(DWORD eproc)

{

PHANDLE_TABLE_ENTRY CidEntry;

ExMapHandleToPointerFUNC map;

ExUnlockHandleTableEntryFUNC umap;

PEPROCESS p;

CLIENT_ID ClientId;

map = (ExMapHandleToPointerFUNC)0x80493285;

CidEntry = map((PHANDLE_TABLE)0x8188d7c8,

LongToHandle(*((DWORD*)(eproc+PIDOFFSET))));

if(CidEntry != NULL)

{

CidEntry->Object = 0;

}

return;

}

Since the job of the PspCidTable is to keep track of all the processes and threads,
it is logical that a rootkit detector could use the PspCidTable to find hidden
processes. However, relying on a single data structure is not a very robust
algorithm. If a rootkit alters this one data structure, the operating system and
other programs will have no idea that the hidden process exists. New rootkit
detection algorithms should be devised that have overlapping dependencies so
that a single change will not go undetected.

8

Chapter 4

FUTo

To demonstrate the weaknesses in the algorithms currently used by rootkit
detection software such as Blacklight and Icesword, the authors have created
FUTo. FUTo is a new version of the FU rootkit. FUTo has the added ability to
manipulate the PspCidTable without using any function calls. It uses DKOM
techniques to hide particular objects within the PspCidTable.

There were some design considerations when implementing the new features in
FUTo. The first was that, like the ExMapHandleXXX functions, the PspCid-
Table is not exported by the kernel. In order to overcome this, FUTo auto-
matically detects the PspCidTable by finding the PsLookupProcessByProces-
sId function and disassembling it looking for the first function call. At the
time of this writing, the first function call is always to ExMapHandleToPointer.
ExMapHandleToPointer takes the PspCidTable as its first parameter. Using
this knowledge, it is fairly straightforward to find the PspCidTable.

PsLookupProcessByProcessId:
mov edi, edi
push ebp
mov ebp, esp
push ebx
push esi
mov eax, large fs:124h
push [ebp+arg_4]
mov esi, eax
dec dword ptr [esi+0D4h]
push PspCidTable
call ExMapHandleToPointer

A more robust method to find the PspCidTable could be written as this algo-

9

rithm will fail if even simple compiler optimizations are made on the kernel.
Opc0de wrote a more robust method to detect non-exported variables like Psp-
CidTable, PspActiveProcessHead, PspLoadedModuleList, etc. Opc0des method
does not requires memory scanning like the method currently used in FUTo. In-
stead Opc0de found that the KdVersionBlock field in the Process Control Region
structure pointed to a structure KDDEBUGGER DATA32[5]. The structure
looks like this:

typedef struct _KDDEBUGGER_DATA32 {

DBGKD_DEBUG_DATA_HEADER32 Header;

ULONG KernBase;

ULONG BreakpointWithStatus; // address of breakpoint

ULONG SavedContext;

USHORT ThCallbackStack; // offset in thread data

USHORT NextCallback; // saved pointer to next callback frame

USHORT FramePointer; // saved frame pointer

USHORT PaeEnabled:1;

ULONG KiCallUserMode; // kernel routine

ULONG KeUserCallbackDispatcher; // address in ntdll

ULONG PsLoadedModuleList;

ULONG PsActiveProcessHead;

ULONG PspCidTable;

ULONG ExpSystemResourcesList;

ULONG ExpPagedPoolDescriptor;

ULONG ExpNumberOfPagedPools;

[...]

ULONG KdPrintCircularBuffer;

ULONG KdPrintCircularBufferEnd;

ULONG KdPrintWritePointer;

ULONG KdPrintRolloverCount;

ULONG MmLoadedUserImageList;

} KDDEBUGGER_DATA32, *PKDDEBUGGER_DATA32;

As the reader can see the structure contains pointers to many of the commonly
needed/used non-exported variables. This is one more robust method to finding
the PspCidTable and other variables like it.

The second design consideration was a little more troubling. When FUTo re-
moves an object from the PspCidTable, the HANDLE ENTRY is replaced with
NULLs representing the fact that the process ”does not exist.” The problem
then occurs when the process that is hidden (and has no PspCidTable entries)
is closed. When the system tries to close the process, it will index into the
PspCidTable and dereference a null object causing a blue screen. The solution
to this problem is simple but not elegant. First, FUTo sets up a process notify

10

routine by calling PsSetCreateProcessNotifyRoutine. The callback function will
be invoked whenever a process is created, but more importantly it will be called
whenever a process is deleted. The callback executes before the hidden process
is terminated; therefore, it gets called before the system crashes. When FUTo
deletes the indexes that contain objects that point to the rogue process, FUTo
will save the value of the HANDLE ENTRYs and the index for later use. When
the process is closed, FUTo will restore the objects before the process is closed
allowing the system to dereference valid objects.

11

Chapter 5

Conclusion

The catch phrase in 2005 was, We are raising the bar [again] for rootkit de-
tection. Hopefully the reader has walked away with a better understanding of
how the top rootkit detection programs are detecting hidden processes and how
they can be improved. Some readers may ask ”What can I do?” Well, the sim-
ple solution is not to connect to the Internet, but a combination of using both
Blacklight, IceSword and Rootkit Revealer will greatly help your chances of
staying rootkit free. A new tool called RAIDE (Rootkit Analysis Identification
Elimination) will be unveiled in the coming months at Blackhat Amsterdam[8].
This new tool does not suffer from the problems brought forth here.

12

Bibliography

[1] Blacklight Homepage. F-Secure Blacklight http://www.f-secure.com/
blacklight/

[2] FU Project Page. FU http://www.rootkit.com/project.php?id=12

[3] IceSword Homepage. IceSword http://www.xfocus.net/tools/200505/
1032.html

[4] LordPE Homepage. LordPE Info http://mitglied.lycos.de/yoda2k/
LordPE/info.htm

[5] Opc0de. 2005. How to get some hidden kernel variables without scanning
http://www.rootkit.com/newsread.php?newsid=101

[6] Rohitabs API Monitor. API Monitor - Spy on API calls http://www.
rohitab.com/apimonitor/

[7] Russinovich, Solomon. Microsoft Windows Internals Fourth Edition.

[8] Silberman. RAIDE:Rootkit Analysis Identification Elimination
http://www.blackhat.com/html/bh-europe-06/bh-eu-06-speakers.
html#Silberman

13

http://www.f-secure.com/blacklight/
http://www.f-secure.com/blacklight/
http://www.rootkit.com/project.php?id=12
http://www.xfocus.net/tools/200505/1032.html
http://www.xfocus.net/tools/200505/1032.html
http://mitglied.lycos.de/yoda2k/LordPE/info.htm
http://mitglied.lycos.de/yoda2k/LordPE/info.htm
http://www.rootkit.com/newsread.php?newsid=101
http://www.rohitab.com/apimonitor/
http://www.rohitab.com/apimonitor/
http://www.blackhat.com/html/bh-europe-06/bh-eu-06-speakers.html#Silberman
http://www.blackhat.com/html/bh-europe-06/bh-eu-06-speakers.html#Silberman

	Foreword
	Introduction
	Blacklight
	Windows OpenProcess
	The PspCidTable

	FUTo
	Conclusion

