
Inside Blizzard: Battle.net

Part 1

Skywing
skywing uninformed@valhallalegends.com

Contents

1 Foreword 2

2 Introduction 3

3 Battle.net issues 5
3.1 Network issues . 6
3.2 Client/Server issues . 7

3.2.1 Client connection limits 8
3.2.2 Chat message server overflow 8
3.2.3 Client authentication . 8
3.2.4 Client namespace spoofing 9
3.2.5 Username collisions . 10
3.2.6 Server de-synchronization 10
3.2.7 Seeing invisible users . 11
3.2.8 Administrative command discovery 11
3.2.9 Gaining administrative privileges 11
3.2.10 Obtaining passwords . 11

4 Battle.net server emulation 13

5 Conclusion 14

1

Chapter 1

Foreword

Abstract: This paper intends to describe a variety of the problems Blizzard
Entertainment has encountered from a practical standpoint through their imple-
mentation of the large-scale online game matchmaking and chat service, Bat-
tle.net. The paper provides some background historical information into the
design and purpose of Battle.net and continues on to discuss a variety of flaws
that have been observed in the implementation of the system. Readers should
come away with a better understanding of problems that can be easily intro-
duced in designing a matchmaking/chat system to operate on such a large scale
in addition to some of the serious security-related consequences of not perform-
ing proper parameter validation of untrusted clients.

2

Chapter 2

Introduction

First, a bit of historical and background information, leading up to the present
day. Battle.net is an online matchmaking service that allows players to set
up online games with other players. It is quite possibly the oldest and largest
system of it’s kind currently in existence (launched in 1997).

The basic services provided by Battle.net are game matchmaking and chat. The
matchmaking system allows one to create and join games with little or no prior
configuration required (other than picking game parameters, such as a map to
play on, or so-forth). The chat system is similar to a stripped-down version of
Internet Relay Chat. The primary differences between IRC and Battle.net (for
the purposes of the chat system) are that Battle.net only allows a user to be
present in one chat channel at once, and many of the channel parameters that
IRC users might be familiar with (maximum number of users in the channel,
who has channel operator privileges) are fixed to well-defined values by the
server.

Battle.net supports a wide variety of Blizzard games, including Diablo, Star-
craft, Warcraft II: Battle.net Edition, Diablo II, and Warcraft III. In addition,
there are shareware versions of Diablo and Starcraft that are supported on Bat-
tle.net, as well as optional expansions for Diablo II, Starcraft, and Warcraft III.
All of these games share a common binary communication protocol that has
evolved over the past 8 years, although different games have differing capabili-
ties with respect to the protocol.

In some cases, this is due to differing requirements for the game clients, but
usually this is simply due to the older programs not being updated as frequently
as newer versions. In short, there are a number of different dialects of the
Battle.net binary protocol that are used by the various supported products, all
at the same time. In addition to supporting an undocumented binary protocol,
Battle.net has for some time now supported a text-based protocol (the “Chat

3

Gateway”, as officialy documented). This protocol supports a limited subset of
the features available to clients using the full game protocol. In particular, it
lacks support for capabilities such as account creation and management.

Both of these protocols are now fairly well understood and documented certain
persons outside of Blizzard. Although the text-based protocol is documented
and fairly stable, the limitations inherent in it make it undesirable for many uses.
Furthermore, in order to help stem the flood of spam on Battle.net, Blizzard
changed their server software to prevent clients using the text-based protocol
from entering all but a few pre-defined chat channels. As a result of this,
many developers have reverse engineered (or more commonly, used the work of
those who came before them) the Battle.net binary protocol and written their
own ”emulator” clients for various purposes (typically as a better alternative
to the limited chat facilities provided by Blizzard’s game clients). These clients
emulate the behavior of a particular Blizzard game program in order to trick
Battle.net into providing the services typically only offered to the game clients,
hence the name “emulator client” 1. In fact, there are also partially compliant
server implementations that implement the server-side chat and matchmaking
logic supported by Battle.net to varying degrees of accuracy. One can today
download a third party server that emulates the Battle.net protocol, and a third
party client that emulates a Blizzard client supporting the Battle.net protocol,
and have the two inter-operate.

1Most of these clients area referred to as “emulator bots” or “emubots” by their developers,
and the Battle.net community in general

4

Chapter 3

Battle.net issues

By virtue of supporting so many different game clients (at present, there are
11 distinct Blizzard-supported programs that connect to Battle.net), Blizzard
has a sizable version-control problem. In fact, this problem is compounded by
several issues.

First, many client game patches add or change the protocol in significant ways.
For instance, the notion of password-protected, persistent player accounts was
not originally even designed into Battle.net, and was added at a later date via
a client patch (and server-side modifications).

On top of that, many clients also have very significant differences in feature
support. To give an example, for many years Diablo and Diablo Shareware
were both supported on Battle.net concurrently while Diablo supported user
accounts and the shareware version did not. As one can imagine, this sort of
thing can give rise to a great many problems. The version control and update
mechanism is not separate from the rest of the protocol. Indeed, the same
server, and the same connection, are used for version control, but a different
connection to the same server is used for the transfer of client patches. As
a result, any compliant Battle.net server is required to support not only the
current Battle.net protocol version that is in use by the current patch level
of every existing client, but it must also support the first few messages used
by every single version of every single Battle.net client ever released, or at least
until the version checking mechanism can be invoked to distribute a new version
(which is not the first task that occurs in some older iterations of the protocol).

To make matters worse, there is now a proliferation of third party clients using
the Battle.net protocol (to varying degrees of accuracy compared to the Bliz-
zard game clients they attempt to emulate) in use on Battle.net today. This
began sometime in mid-1999 when a program called “NBBot”, authored by
Andreas Hansson, who often goes by the handle “Adron”, entered widespread

5

distribution, though this was not the intent of the author. NBBot was the first
third party client to emulate the Battle.net protocol to an extent that allowed
it to masquerade as a game client. Several years later, the source code for this
program was inadvertently released to wide-spread public distribution, which
kicked off large-scale development of third party Battle.net protocol clients by
a number of authors.

Despite all of these challenges, Blizzard has managed to keep Battle.net up and
running for nearly a decade now, and claims over a million active users. However,
the road leading up to the present day has not been “clear sailing” for Blizzard.
This leads us into some of the specific problems facing Battle.net leading up
until the present day. One of the major classes of problems encountered by
Blizzard as Battle.net has grown is that it was (in the author’s opinion) simply
not designed to support the circumstances in which it eventually ended up being
used. This is evident in a variety of events that have occurred over the past few
years:

• The addition of persistent player accounts to the system.

• The addition of the text-based chat protocol to the system.

• Significant changes to the backend architecture utilized by Battle.net.

Although it is difficult to provide exact details of these changes, having not
worked at Blizzard, many of them can be inferred.

3.1 Network issues

Battle.net was originally setup as a small number of linked servers placed at
various strategic geographical locations. They were “linked” in the sense that
players on one server could interact with players on a different server as seam-
lessly as with players connected to the same server. This architecture eventually
proved unsupportable, as increasing usage of Battle.net led to the common oc-
currence of ”server splits”, in which one or more servers would be unable to
keep up with the rest of the network and become temporarily disconnected.

Eventually, the system was split into two separate networks (each starting with
a copy of all account and player data present at the time of the division): The
Asian network, and United States and European network. Each network was
comprised of a number of different servers that players could connect to in an
optimized fashion based on server response time.

Some time later, even this system proved untenable. The network was once again
permanently fragmented, this time splitting the United States and European
network into three subnetworks. This is the topology retained today, with the

6

networks designated “USEast”, “USWest”, “Europe”, “Asia”. It is believed that
all servers in a server network (also referred to as a “cluster” or “gateway”) are,
at present, located at the same physical hosting facility on a high-speed LAN.

As new game requirements came about, a new architecture for Diablo II and
Warcraft III as required. In these cases, games are hosted on Blizzard-operated
servers and not on client machines in order to make them more resilient from
attempts to hack the game to gain an unfair advantage. There are significant
differences to how this is implemented for Diablo II and Warcraft III, and it is not
used for certain types of games in Warcraft III . This resulted in a significant
change to the way the service performs it’s primary function, that is, game
matchmaking.

3.2 Client/Server issues

Aside from the basic network design issues, other problems have arisen from the
fact that Blizzard did not expect, or intend for, third party programs to use its
Battle.net protocol. As a result, proper validation has not always been in place
for certain conditions that would not be generated through the Blizzard client
software.

As mentioned earlier, many developers eventually turned to the using the Bat-
tle.net protocol directly as opposed to the text-based protocol in order to cir-
cumvent certain limitations in the text-based protocol. There are a number of
reasons for this. Historically, clients utilizing the Battle.net protocol have been
able to enter channels that are already full (private channels on Battle.net have
a limit of 40 users, normally), and have been able to perform various account
management functions (such as creating accounts, changing passwords, man-
aging user profile information, and so-forth) that are not doable through the
text-based protocol.

In addition to having access to extended protocol-level functionality, clients
using the Battle.net protocol are permitted to open up to eight connections to a
single Battle.net network per IP address (as opposed to the text-based protocol,
which only allows a single connection per IP address). This limit was originally
four connections per IP address, and was raised after NATs, particularly in
cyber cafes, gained popularity.

This was particularly attractive to a number of persons on Battle.net who used
third-party chat clients for a variety of reasons. The primary reason was gen-
erally the same “channel war” phenomenon that has historically plagued IRC
was also rather prevalent on Battle.net, and being able to field a large number
of clients per IP address was seen as a significant advantage.

Due to the prevalence of “channel wars” on Battle.net, artificially large numbers

7

of third-party clients utilizing the Battle.net protocol came into use. Although
it is difficult to estimate the exact number of users of such clients, the author
has observed upwards of several thousand being logged on to the service at once.

The development and usage of said third party clients has resulted in the dis-
covery of a number of other issues with Battle.net. While most of the issues
covered here are either already fixed or relatively minor, there is still value in
discussing them.

3.2.1 Client connection limits

Through the use of certain messages in the Battle.net protocol, it is possible to
enter a channel beyond the normal 40 user limit. This was due to the fact that
the method a game client would use to return to a chat channel after leaving a
game would not properly check the user count. After miscreants exploited this
vulnerability to put thousands of users into one channel, which subsequently
lead to server crashes, Blizzard finally fixed this vulnerability.

3.2.2 Chat message server overflow

The server software often assumed that the client would only perform ’sane’
actions, and one of these assumptions dealt with how long of a chat message
a client could send. The server apparently copied a chat message indicated by
a Battle.net protocol client into a fixed 512-byte buffer without proper length
checking, such that a client could crash a server by sending a long enough mes-
sage. Due to the fact that Blizzard’s server binaries are not publicly available,
it would not have been easy to exploit this flaw to run arbitrary code on the
server. This serious vulnerability was fixed within a day of being reported.

3.2.3 Client authentication

Aside from general sanity checks, Blizzard also has had some issues relating to
authentication. Blizzard currently has two systems in use for user account pass-
word authentication. In order to create a third party client, these systems had
to be understood and third party implementations reduced. This has revealed
several flaws in their implementation.

The first system Blizzard utilizes is challenge-response system that uses a SHA-
1 hash of the client’s password. The game client implementation of this system
lowercases the entire password string before hashing it, significantly reducing
password security. (A third party client could opt not to do this, and as such
create an account that is impossible to log on to through the official Blizzard
game clients or the text-based protocol. The text-based protocol sends a user’s

8

password in cleartext, after which the server lowercases the password and in-
ternally compares a hash of it with the account in question’s password in a
database.) However, a more serious security problem remains: in SHA-1, there
are a number of bit rotate left (“ROL”) operations. The Blizzard programmer
responsible for implementing this apparently switched the two parameters in
every call to ROL. That is, if there was a “#define ROL(a, b) (...)” macro, the
programmer swapped the two arguments. This drastically reduces the security
of Battle.net password hashes, as most of the data being hashed ends up being
zero bits. Because of the problem of incompatibility with previously created
accounts, this system is still in use today.

The second system Blizzard utilizes is one based off of SRP (Secure Remote
Password, see http://srp.stanford.edu). Only Warcraft III and it’s expan-
sion use this system for password authentication. This product has it’s own
account namespace on Battle.net, so that there are no backwards compatibility
issues with the older “broken SHA-1” method. It is worth noting that War-
craft III clients and older clients can still communicate via chat, however - the
server imposes a namespace decoration to client account names for communi-
cation between namespaces, such that a client logged on as Warcraft III would
see a user “User” logged on as Starcraft on the USEast Battle.net network as
“User@USEast”. However, this system is also flawed, albeit less severely. In
particular, the endian-ness of calculations is reversed, but this is not properly
accounted for in some parts of the implementation, such that some operations
expecting to remove trailing zero bits instead remove leading zero bits after
converting a large integer to a flat binary buffer. There is a second flaw, as well,
although it does not negatively impact the security of the client: In some of
the conversions from big numbers to flat buffers, the server does not properly
zero out bytes if the big number does not occupy 32 non-zero bytes, and in-
stead leaves uninitialized data in them. The result is that some authentication
attempts will randomly fail. As far as the author knows, this bug is still present
in Battle.net.

3.2.4 Client namespace spoofing

With the release of Warcraft III, a separate account namespace was provided for
users of that product, as mentioned above. The server internally keeps track of a
user’s account name as “x#username”, where x is a digit specifying an alternate
namespace (the only currently known namespace designation is ’w’, for Warcraft
III). This is known due to a message that exposes the internal unique name for
a user to protocol clients. While the character ’#’ has never been permitted in
account names, if a user logs on to the same account more than once, they are
assigned a unique name of the format ’accountname#serial’, where ’serial’ is a
number that is incremented according to how many duplicate logons of the same
account there are. Due to a lack of parameter checking in the account creation
process, it was at one time possible to create accounts,via a third party client,

9

http://srp.stanford.edu

that were one character long (all of the official game clients do not allow the user
to do this). For some time, such accounts confused the server into thinking that
a user was actually on a different (non-existent) namespace, and thus allowed
a user who logged on to a single character account more than once to become
impossible to ’target’ via any of the user management functions. For example,
such a user could not be sent a private message, ignored, banned or kicked
from a channel, or otherwise affected by any other commands that operate on
a specific user. This was, of course, frequently abused to spam individuals with
the victims being unable to stop the spammer (or even ignore them!). This
problem has been fixed in the current server version.

3.2.5 Username collisions

As referred to in the previuos sub-section, for some time the server allowed
Diablo Shareware clients. These clients did not log on to accounts, and instead
simply assigned themselves a username. Normal procedures were followed if
the username was already in use, which involved appending a serial number to
the end to make a unique name. Besides the obvious problem of being able to
impersonate someone to a user who was not clever enough to check what game
type one was logged on as, this creates an additional vulnerability that was
heavily exploited in “channel wars”. If a server became split from the rest of
the network due to load, one could log on to that server using Diablo Shareware,
and pick the same name as someone logged on to the rest of the network using a
different game type. When the server split was resolved, the server would notice
that there were now two users with the same unique name, and disconnect both
of them with the “Duplicate username detected.” message1. This could be
used to force users offline any time a server split occurred. Being able to do
so was desirable in the sense that there could normally only be one channel
operator in a channel at a time (barring server splits, which could be used to
create a second operator if the channel was entirely emptied and then recreated
on the split server). When that operator left, the next person in line would be
gifted with operator permissions (unless the operator had explicitly ’designated’
a new heir for operator permissions). So, one could “take over” a channel by
systematically disconnecting those “ahead of” one’s client in a channel2.

3.2.6 Server de-synchronization

At one time, a race condition such that if a malicious user were to log on to two
connected (i.e. not-split) servers at the same time, the two servers would cease
to communicate with another, causing a server split to occur. It is difficult
to provide an exact explanation for why this would occur given the collision

1This is synonymous with the “colliding” exploits of old that used to plague IRC
2A channel is ordered by a user’s age in the channel

10

elimination mechanism described above for users that are logged on with the
same unique name, but it is assumed that in the process of synchronizing a
new user between servers, there is a period of time where that a second server
can also attempt to synchronize the same user and cause one of the servers
to get into a invalid state. According to observations, this invalid state would
eventually be resolved automatically, usually after 10-15 minutes.

3.2.7 Seeing invisible users

Battle.net administrators have the ability to become invisible to normal users.
However, until recently, this was flawed in that the server would expose the
existence of an invisible user to regular users during certain operations. In
particular, if one ignores or unignores a user, the server will re-send the state of
all users that are ignored or unignored in the current channel. Before this bug
was fixed, this list included any invisible users3.

3.2.8 Administrative command discovery

Originally, Battle.net would provide no acknowledgement if one issued an un-
recognized chat command (”slash-command”). Blizzard later changed the server
software to respond with an error message if a user sent an unknown command,
but the server originally silently ignored the command if the user issued a priv-
ileged (administrator-only) command. This allowed end users to discover the
names of various commands accessible to system administrators.

3.2.9 Gaining administrative privileges

Due to an oversight in the way administrator permissions are assigned to Bat-
tle.net accounts, it was at one time possible to overwrite the account of an
administrator with a new account and keep the special permissions otherwise
associated with the account. (An account can be overwritten like so if it has
not been accessed in 90 days). This could have very nearly resulted in a disaster
for Blizzard, had a more malicious user discovered this vulnerability and abused
such privileges.

3.2.10 Obtaining passwords

Eventually, Blizzard implemented a password recovery mechanism whereby one
could associate an e-mail address with an account, and request a password

3It is worth noting that the official game clients will ignore any unknown users returned in
the state update message, so this vulnerability could only be utilized by a third party client

11

change through the Battle.net protocol for an account at logon time. This
would result in an e-mail being dispatched to the registered address. If the
user then replied to the mail as instructed, they would be automatically mailed
back with a new account password. Unfortunately, as originally implemented,
this system did not properly perform validation on the confirmation mail that
the user was required to send. In particular, if a malicious user created an
account “victim” on one Battle.net network, such as the Asian network, and
then requested a password reset for that account, they could alter the return
email slightly and actually reset the password for the account “victim” on a
different Battle.net network, such as the USEast network. This exploit was
actually publicly disclosed and saw over a day of heavy abuse before Blizzard
managed to patch it.

12

Chapter 4

Battle.net server emulation

Blizzard ’declared war’ on the programmers of servers that implement the Bat-
tle.net protocol some time ago when they took the developers of “bnetd” to
court. As of Warcraft III, they have taken active measures to make life diffi-
cult for developers programming third party Battle.net-compatible servers. In
particular, two actions are of note:

During the Warcraft III Expansion beta test, Blizzard implemented an encryp-
tion scheme for the Battle.net protocol (this was only used during the beta test
and not on production Battle.net). This consisted of using the RC4 cipher to
encrypt messages send and received from the server. The tricky part was that
Blizzard had hardcoded constants that were encrypted using the cipher state,
but never actually sent on the wire (these constants were different for each mes-
sage). This made implementing a server difficult, as one had to find each magic
constant. Unfortunately, Blizzard neglected to consider the policy of someone
releasing a hacked version of the client that zeroed the RC4 initialization para-
meters, such that the entire encrypted stream became plaintext.

After several patches, Blizzard implemented a scheme by which a Warcraft III
client could verify that it was indeed connecting to a genuine Blizzard Battle.net
server. This scheme worked by having the Battle.net server sign it’s IP address
and send the resulting signature to the client, which would refuse to log on if
the server’s IP address did not match the signature. However, in the original
implementation, the game client only checked the first four bytes of the signed
data, and did not validate the remaining (normally zero) 124 bytes. This allows
one to easily brute-force a signature that has a designed IP address, as one only
has to check 32 bits of possible signatures at most to find it.

13

Chapter 5

Conclusion

Developing a platform to support a diverse set of requirements such as Battle.net
is certainly no easy task. Though the original design could have perhaps been
improved upon, it is the author’s opinion that given what they had to work
with, Blizzard did a reasonable job of ensuring that the service they set out
to create stood the test of time, especially considering that support for all the
future features of their later game clients could not have been predicted at the
time the system was originally created. Nevertheless, it is the author’s opinion
that a system designed where clients are untrusted and all actions performed
by them are subject to full validation would have been far more secure from the
start, without any of the various problems Blizzard has encountered over the
years.

14

	Foreword
	Introduction
	Battle.net issues
	Network issues
	Client/Server issues
	Client connection limits
	Chat message server overflow
	Client authentication
	Client namespace spoofing
	Username collisions
	Server de-synchronization
	Seeing invisible users
	Administrative command discovery
	Gaining administrative privileges
	Obtaining passwords

	Battle.net server emulation
	Conclusion

