
What Were They Thinking?

Annoyances Caused by Unsafe Assumptions

skape
mmiller@hick.org

Last modified: 04/04/2005

Contents

1 Introduction 2

2 McAfee VirusScan Consumer (8.0/9.0) 4
2.1 The Assumption . 4
2.2 The Problem . 4
2.3 The Solution . 10

3 ATI Radeon 9000 Driver Series 12
3.1 The Assumption . 12
3.2 The Problem . 12
3.3 The Solution . 15

4 Conclusion 16

1

Chapter 1

Introduction

There is perhaps no issue more dear to a developer’s heart than the issue of
interoperability with third-party applications. In some cases, software that is
being written by one developer has to be altered in order to make it function
properly when used in conjunction with another application that is created by
a third-party. For the sake of illustration, the lone developer will henceforth be
referred to as the protagonist given his or her valiant efforts in their quest to
obtain that which is almost always unattainable: interoperability. The third-
parties, on the other hand, will be referred to as the antagonists due to their
wretched attempts to prevent the protagonist from obtaining his or her goal
of a utopian software environment. Now, granted, that’s not to say that the
protagonist can’t also become the antagonist by continuing the ugly cycle of
exposing compatibility issues to other would-be protagonists, but for the sake
of discussion such a point is not relevant.

What is relevant, however, are the ways in which an antagonistic developer can
write software that will force other developers to work around issues exposed by
the software that the antagonist has written. There are far too many specific
issues to list, but the majority of these issues can be generalized into one category
that will serve as the focus for this document. To put it simply, many developers
make assumptions about the state of the machine that their software will be
executing on. For instance, some software will assume that they are the only
piece of software performing a given task on a machine. In the event that
another piece of software attempts to perform a similar task, such as may occur
when two applications need to extend APIs by hooking them, the results may
be unpredictable. Perhaps a more concrete example of where assumptions can
lead to problems can be seen when developers assume that the behavior of
undocumented or unexposed APIs will not change.

Before putting all of the blame on the antagonists, however, it is important to

2

understand that it is, in most cases, necessary to make assumptions about the
way in which undocumented code performs, such as when dealing with low-level
software. This is especially true when dealing with closed-source APIs, such as
those provided by Microsoft. To that point, Microsoft has made an effort to
document the ways in which every exposed API routine can perform, thereby
reducing the number of compatibility issues that a developer might experience
if they were to assume that a given routine would always perform in the same
manner. Furthermore, Microsoft is renowned for attempting to always provide
backwards compatibility. If a Microsoft application performs one way in a given
release, chances are that it will continue to perform in the same fashion in
subsequent releases. Third-party vendors, on the other hand, tend to have a
more egocentric view of the way in which their software should work. This leads
most vendors to dodge responsibility by pointing the blame at the application
that is attempting to perform a certain task rather than making their code to
be more robust.

In the interest of helping to make code more robust, this document will provide
two examples of widely used software that make assumptions about the way in
which code will execute on a given machine. The assumptions these applications
make are always safe under normal conditions. However, if a new application
that performs a certain task or an undocumented change is thrown into the mix,
the applications find themselves faltering in the most unenjoyable ways. The
two applications that will be analyzed are listed below:

1. McAfee VirusScan Consumer (8.0/9.0)

2. ATI Radeon 9000 Driver Series

Each of the assumptions that these three software products make will be ana-
lyzed in-depth to describe why it is that they are poor assumptions to make,
such as by describing or illustrating conditions where the assumptions are, or
could be, false. From there, suggestions will be made on how these assumptions
might be worked around or fixed to allow for a more stable product in general.
In the end, the reader should have a clear understanding of the assumptions
described in this document. If successful, the author hopes the topic will allow
the reader to think critically about the various assumptions the reader might
make when implementing software.

3

Chapter 2

McAfee VirusScan
Consumer (8.0/9.0)

2.1 The Assumption

McAfee VirusScan Consumer 8.0, 9.0, and possibly previous versions make as-
sumptions about processes not performing certain types of file operations during
a critical phase of process initialization. If file operations are performed during
this phase, the machine may blue screen due to an invalid pointer access.

2.2 The Problem

The critical phase of process execution that the summary refers to is the period
between the time that the new process object instance is created by nt!ObCreateObject
and the time the new process object is inserted into the process object type list
by nt!ObInsertObject. The reason this phase is so critical is because it is not
safe for things to attempt to obtain a handle to the process object, such as can
be done by calling nt!ObOpenObjectByPointer. If an application were to at-
tempt to obtain a handle to the process object before it had been inserted into
the process object list by nt!ObInsertObject, critical creation state informa-
tion that is stored in the process object’s header would be overwritten with state
information that is meant to be used after the process has passed the initial se-
curity validation phase that is handled by nt!ObInsertObject. In some cases,
overwriting the creation state information prior to calling nt!ObInsertObject
can lead to invalid pointer references when nt!ObInsertObject is eventually
called, thus leading to an evil blue screen that some users are all too familiar

4

with.

To better understand this problem it is first necessary to understand the way
in which nt!PspCreateProcess creates and initializes the process object and
the process handle that is passed back to callers. The object creation portion is
accomplished by making a call to nt!ObCreateObject in the following fashion:

ObCreateObject(
KeGetPreviousMode(),
PsProcessType,
ObjectAttributes,
KeGetPreviousMode(),
0,
0x258,
0,
0,
&ProcessObject);

If the call is successful, a process object of the supplied size is created and
initialized using the attributes supplied by the caller. In this case, the object
is created using the nt!PsProcessType object type. The size argument that
is supplied to nt!ObCreateObject, which in this case is 0x258, will vary be-
tween various versions of Windows as new fields are added and removed from
the opaque EPROCESS structure. The process object’s instance, as with all ob-
jects, is prefixed with an OBJECT HEADER that may or may not also be prefixed
with optional object information. For reference, the OBJECT HEADER structure
is defined as follows:

OBJECT_HEADER:
+0x000 PointerCount : Int4B
+0x004 HandleCount : Int4B
+0x004 NextToFree : Ptr32 Void
+0x008 Type : Ptr32 _OBJECT_TYPE
+0x00c NameInfoOffset : UChar
+0x00d HandleInfoOffset : UChar
+0x00e QuotaInfoOffset : UChar
+0x00f Flags : UChar
+0x010 ObjectCreateInfo : Ptr32 _OBJECT_CREATE_INFORMATION
+0x010 QuotaBlockCharged : Ptr32 Void
+0x014 SecurityDescriptor : Ptr32 Void
+0x018 Body : _QUAD

When an object is first returned from nt!ObCreateObject, the Flags attribute
will indicate if the ObjectCreateInfo attribute is pointing to valid data by

5

having the OB FLAG CREATE INFO, or 0x1 bit, set. If the flag is set then the
ObjectCreateInfo attribute will point to an OBJECT CREATE INFORMATION struc-
ture which has the following definition:

OBJECT_CREATE_INFORMATION:
+0x000 Attributes : Uint4B
+0x004 RootDirectory : Ptr32 Void
+0x008 ParseContext : Ptr32 Void
+0x00c ProbeMode : Char
+0x010 PagedPoolCharge : Uint4B
+0x014 NonPagedPoolCharge : Uint4B
+0x018 SecurityDescriptorCharge : Uint4B
+0x01c SecurityDescriptor : Ptr32 Void
+0x020 SecurityQos : Ptr32 _SECURITY_QUALITY_OF_SERVICE
+0x024 SecurityQualityOfService : _SECURITY_QUALITY_OF_SERVICE

When nt!ObInsertObject is finally called, it is assumed that the object still has
the OB FLAG CREATE INFO bit set. This will always be the case unless something
has caused the bit to be cleared, as will be illustrated later in this chapter.
The flow of execution within nt!ObInsertObject begins first by checking to
see if the process’ object header has any name information, which is conveyed
by the NameInfoOffset of the OBJECT HEADER. Regardless of whether or not the
object has name information, the next step taken is to check to see if the object
type that is associated with the object that is supplied to nt!ObInsertObject
requires a security check to be performed. This requirement is conveyed through
the TypeInfo attribute of the OBJECT TYPE structure which is defined below:

OBJECT_TYPE:
+0x000 Mutex : _ERESOURCE
+0x038 TypeList : _LIST_ENTRY
+0x040 Name : _UNICODE_STRING
+0x048 DefaultObject : Ptr32 Void
+0x04c Index : Uint4B
+0x050 TotalNumberOfObjects : Uint4B
+0x054 TotalNumberOfHandles : Uint4B
+0x058 HighWaterNumberOfObjects : Uint4B
+0x05c HighWaterNumberOfHandles : Uint4B
+0x060 TypeInfo : _OBJECT_TYPE_INITIALIZER
+0x0ac Key : Uint4B
+0x0b0 ObjectLocks : [4] _ERESOURCE

OBJECT_TYPE_INITIALIZER:
+0x000 Length : Uint2B
+0x002 UseDefaultObject : UChar
+0x003 CaseInsensitive : UChar

6

+0x004 InvalidAttributes : Uint4B
+0x008 GenericMapping : _GENERIC_MAPPING
+0x018 ValidAccessMask : Uint4B
+0x01c SecurityRequired : UChar
+0x01d MaintainHandleCount : UChar
+0x01e MaintainTypeList : UChar
+0x020 PoolType : _POOL_TYPE
+0x024 DefaultPagedPoolCharge : Uint4B
+0x028 DefaultNonPagedPoolCharge : Uint4B
+0x02c DumpProcedure : Ptr32
+0x030 OpenProcedure : Ptr32
+0x034 CloseProcedure : Ptr32
+0x038 DeleteProcedure : Ptr32
+0x03c ParseProcedure : Ptr32
+0x040 SecurityProcedure : Ptr32
+0x044 QueryNameProcedure : Ptr32
+0x048 OkayToCloseProcedure : Ptr32

The specific boolean field that is checked by nt!ObInsertObject is the TypeInfo.SecurityRequired
flag. If the flag is set to TRUE, which it is for the nt!PsProcessType object
type, then nt!ObInsertObject uses the access state that is passed in as the
second argument or creates a temporary access state that it uses to validate the
access mask that is supplied as the third argument to nt!ObInsertObject.
Prior to validating the access state, however, the SecurityDescriptor at-
tribute of the ACCESS STATE structure is set to the SecurityDescriptor of
the OBJECT CREATE INFORMATION structure. This is done without any checks
to ensure that the OB FLAG CREATE INFO flag is still set in the object’s header,
thus making it potentially dangerous if the flag has been cleared and the union’d
attribute no longer points to creation information.

In order to validate the access mask, nt!ObInsertObject calls into nt!ObpValidateAccessMask
with the initialized ACCESS STATE as the only argument. This function first
checks to see if the ACCESS STATE’s SecurityDescriptor attribute is set to
NULL. If it’s not, then the function checks to see if the SecurityDescriptor’s
Control attribute has a flag set. It is at this point that the problem is real-
ized under conditions where the object’s ObjectCreateInfo attribute no longer
points to creation information. When such a condition occurs, the SecurityDescriptor
attribute that is referenced relative to the ObjectCreateInfo attribute will po-
tentially point to invalid memory. This can then lead to an access violation
when attempting to reference the SecurityDescriptor that is passed as part
of the ACCESS STATE instance to nt!ObpValidateAccessMask. For reference,
the ACCESS STATE structure is defined below:

ACCESS_STATE:
+0x000 OperationID : _LUID

7

+0x008 SecurityEvaluated : UChar
+0x009 GenerateAudit : UChar
+0x00a GenerateOnClose : UChar
+0x00b PrivilegesAllocated : UChar
+0x00c Flags : Uint4B
+0x010 RemainingDesiredAccess : Uint4B
+0x014 PreviouslyGrantedAccess : Uint4B
+0x018 OriginalDesiredAccess : Uint4B
+0x01c SubjectSecurityContext : _SECURITY_SUBJECT_CONTEXT
+0x02c SecurityDescriptor : Ptr32 Void
+0x030 AuxData : Ptr32 Void
+0x034 Privileges : __unnamed
+0x060 AuditPrivileges : UChar
+0x064 ObjectName : _UNICODE_STRING
+0x06c ObjectTypeName : _UNICODE_STRING

Under normal conditions, nt!ObInsertObject is the first routine to create a
handle to the newly created object instance. When the handle is created, the
creation information that was initialized during the instantiation of the object
is used for such things as validating access, as described above. Once the cre-
ation information is used it is discarded and replaced with other information
that is specific to the type of the object being inserted. In the case of process
objects, the Flags attribute has the OB FLAG CREATE INFO bit cleared and the
QuotaBlockCharged attribute, which is union’d with the ObjectCreateInfo
attribute, is set to an instance of an EPROCESS QUOTA BLOCK which is defined
below:

EPROCESS_QUOTA_ENTRY:
+0x000 Usage : Uint4B
+0x004 Limit : Uint4B
+0x008 Peak : Uint4B
+0x00c Return : Uint4B

EPROCESS_QUOTA_BLOCK:
+0x000 QuotaEntry : [3] _EPROCESS_QUOTA_ENTRY
+0x030 QuotaList : _LIST_ENTRY
+0x038 ReferenceCount : Uint4B
+0x03c ProcessCount : Uint4B

The assumptions made by nt!ObInsertObject work flawlessly so long as it is
the first routine to create a handle to the object instance. Fortunately, under
normal circumstances, nt!ObInsertObject is always the first routine to create a
handle to the object. Unfortunately for McAfee, however, they assume that they
can safely attempt to obtain a handle to a process object without first checking
to see what state of execution the process is in, such as by checking to see if the

8

OB FLAG CREATE INFO flag is set in the object’s header. By attempting to ob-
tain a handle to the process object before it is inserted by nt!ObInsertObject,
McAfee effectively destroys state that is needed by nt!ObInsertObject to suc-
ceed.

To show this problem being experienced in the real world, the following debugger
output shows McAfee first attempting to obtain a handle to the process object
which is then followed shortly thereafter by nt!ObInsertObject attempting to
validate the object’s access mask with a bogus SecurityDescriptor which, in
turn, results in an unrecoverable access violation:

McAfee attempting to open a handle to the process object before
nt!ObInsertObject has been called:

kd> k
nt!ObpChargeQuotaForObject+0x2f
nt!ObpIncrementHandleCount+0x70
nt!ObpCreateHandle+0x17c
nt!ObOpenObjectByPointer+0x97
WARNING: Stack unwind information not available.
NaiFiltr+0x2e45
NaiFiltr+0x3bb2
NaiFiltr+0x4217
nt!ObpLookupObjectName+0x56a
nt!ObOpenObjectByName+0xe9
nt!IopCreateFile+0x407
nt!IoCreateFile+0x36
nt!NtOpenFile+0x25
nt!KiSystemService+0xc4
nt!ZwOpenFile+0x11
0x80a367b5
nt!PspCreateProcess+0x326
nt!NtCreateProcessEx+0x7e
nt!KiSystemService+0xc4

After which point nt!ObInsertObject attempts to validate the
object’s access mask using an invalid SecurityDescriptor:

kd> k
nt!ObpValidateAccessMask+0xb
nt!ObInsertObject+0x1c2
nt!PspCreateProcess+0x5dc
nt!NtCreateProcessEx+0x7e
nt!KiSystemService+0xc4
kd> r
eax=fa7bbb54 ebx=ffa9fc60 ecx=00023994

9

edx=00000000 esi=00000000 edi=ffb83f00
eip=8057828e esp=fa7bbb40 ebp=fa7bbbb8
iopl=0 nv up ei pl nz na pe nc
cs=0008 ss=0010 ds=0023 es=0023
fs=0030 gs=0000 efl=00000202
nt!ObpValidateAccessMask+0xb:
8057828e f6410210

test byte ptr [ecx+0x2],0x10 ds:0023:00023996=??

The method by which this issue was located was by setting a breakpoint on
the instruction after the call to nt!ObCreateObject in nt!PspCreateProcess.
Once hit, a memory access breakpoint was set on the Flags attribute of the
object’s header that would break whenever the field was written to. This, in
turn, lead to the tracking down of the fact that McAfee was acquiring a handle
to the process object prior to nt!ObInsertObject being called, which in turn
lead to the OB FLAG CREATE INFO flag being cleared and the ObjectCreateInfo
attribute being invalidated.

2.3 The Solution

There are two ways that have been identified that could correct this issue. The
first, and most plausible, would be for McAfee to modify their driver such that
it will refuse to acquire a handle to a process object if the OB FLAG CREATE INFO
bit is set in the process’ object header Flags attribute. The downside to using
this approach is that it requires McAfee to make use of undocumented structures
that are intended by Microsoft to be opaque, and for good reason. However, the
author is not currently aware of another means by which an object’s creation
state can be detected using general purpose API routines.

The second approach, and it’s one that should at least result in a bugcheck
within nt!ObInsertObject, would be to check to see if the object’s OB FLAG CREATE INFO
bit has been cleared. If it has, an alternate action can be taken to validate the
object’s access mask. If it hasn’t, the current method of validating the access
mask can be used. At this point in time, the author cannot currently speak on
what the alternate action would be, though it seems plausible that there would
be another means by which a synonymous action could be performed without
relying on the creation information in the object header.

In the event that neither of these solutions are pursued, it will continue to
be necessary for protagonistic developers to avoid performing actions between
nt!ObCreateObject and nt!ObInsertObject that might result in file opera-
tions being performed from within the new process’ context. One of a number
of work-arounds to this problem would be to post file operations off to a system
worker thread that would then inherently run within the context of the System

10

process rather than the new process.

11

Chapter 3

ATI Radeon 9000 Driver
Series

3.1 The Assumption

The ATI Radeon 9000 Driver Series, and likely other ATI driver series, makes
assumptions about the location that the RTL USER PROCESS PARAMETERS struc-
ture will be mapped at in the address space of a process that attempts to do
3D operations. If the structure is not mapped at the address that is expected,
the machine may blue screen depending on the values that exist at the memory
location, if any.

3.2 The Problem

During some experimentation with changing the default address space layout of
processes on NT-based versions of Windows, it was noticed that machines that
were using the ATI Radeon 9000 series drivers would crash if a process attempted
to do 3D operations and the location of the process’ parameter information was
changed from the address at which it is normally mapped at. Before proceeding,
it is first necessary for the reader to understand the purpose of the process
parameter information structure and how it is that it’s mapped into the process’
address space.

Most programmers are familiar with the API routine kernel32!CreateProcess[A/W].
This routine serves as the primary means by which user-mode applications
spawn new processes. The function itself is robust enough to support a number
of ways in which a new process can be initialized and then executed. Behind the

12

scenes, CreateProcess performs all of the necessary operations to prepare the
new task for execution. These options include opening the executable image file
and creating a section object that is then passed to ntdll!NtCreateProcessEx
which returns a unique process handle on success. If a handle is obtained, Cre-
ateProcess then proceeds to prepare the process for execution by initializing the
process’ parameters as well as creating and initializing the first thread in the
process. A more complete analysis of the way in which CreateProcess operates
can be found in David Probert’s excellent analysis of Windows NT’s process
architecture[1].

For the purpose of this document, however, the part that is of most concern is
that step in which CreateProcess initializes the new process’ parameters. This
is accomplished by making a call into kernel32!BasePushProcessParameters
which in turn calls into ntdll!RtlCreateProcessParameters. The parameters
are initialized within the process that is calling CreateProcess and are then, in
turn, copied into the address space of the new process by first allocating storage
with ntdll!NtAllocateVirtualMemory and then by copying the memory from
the parent process to the child with ntdll!NtWriteVirtualMemory. Due to
the fact that this occurs before the new process actually executes any code, the
address that the process parameter structure is allocated at is almost guaranteed
to be at the same address. This address happens to be 0x00020000. This
fact is most likely why ATI made the assumption that the process parameter
information would always be at a static address.

If, however, ntdll!NtAllocateVirtualMemory allocates the process parameter
storage at any place other than the static address described above, ATI’s driver
will attempt to reference a potentially invalid address when it comes time to
perform 3D operations. The specific portion of the driver suite that has the error
is the ATI3DUAG.DLL kernel-mode graphics driver. Inside this image there is a
portion of code that attempts to make reference to the addresses 0x00020038
and 0x0002003C without doing any sort of probing and locking or validation on
the region it’s requesting. If the region does not exist or contains unexpected
data, a blue screen is a sure thing. The actual portion of the driver that makes
this assumption can be found below:

mov [ebp+var_4], eax
mov edx, 20000h <--
mov [ebp+var_24], edx
movzx ecx, word ptr ds:dword_20035+3 <--
shr ecx, 1
mov [ebp+var_28], ecx
lea eax, [ecx-1]
mov [ebp+var_1C], eax
test eax, eax
jbe short loc_227CC
mov ebx, [edx+3Ch] <--

13

cmp word ptr [ebx+eax*2], ’\’

The lines of intereste are marked by “<--” indicators pointing to the exact in-
structions that result in a reference being made to an address that is expected
to be within a process’ parameter information structure. For the sake of investi-
gation, one might wonder what it is that the driver could be attempting to ref-
erence. To determine that, it is first necessary to dump the format of the process
parameter structure which, as stated previously, is RTL USER PROCESS PARAMETERS:

RTL_USER_PROCESS_PARAMETERS:
+0x000 MaximumLength : Uint4B
+0x004 Length : Uint4B
+0x008 Flags : Uint4B
+0x00c DebugFlags : Uint4B
+0x010 ConsoleHandle : Ptr32 Void
+0x014 ConsoleFlags : Uint4B
+0x018 StandardInput : Ptr32 Void
+0x01c StandardOutput : Ptr32 Void
+0x020 StandardError : Ptr32 Void
+0x024 CurrentDirectory : _CURDIR
+0x030 DllPath : _UNICODE_STRING
+0x038 ImagePathName : _UNICODE_STRING
+0x040 CommandLine : _UNICODE_STRING
+0x048 Environment : Ptr32 Void
+0x04c StartingX : Uint4B
+0x050 StartingY : Uint4B
+0x054 CountX : Uint4B
+0x058 CountY : Uint4B
+0x05c CountCharsX : Uint4B
+0x060 CountCharsY : Uint4B
+0x064 FillAttribute : Uint4B
+0x068 WindowFlags : Uint4B
+0x06c ShowWindowFlags : Uint4B
+0x070 WindowTitle : _UNICODE_STRING
+0x078 DesktopInfo : _UNICODE_STRING
+0x080 ShellInfo : _UNICODE_STRING
+0x088 RuntimeData : _UNICODE_STRING
+0x090 CurrentDirectores : [32] _RTL_DRIVE_LETTER_CURDIR

To determine the attribute that the driver is attempting to reference, one must
take the addresses and subtract them from the base address 0x00020000. This
produces two offsets: 0x38 and 0x3c. Both of these offsets are within the
ImagePathName attribute which is a UNICODE STRING. The UNICODE STRING
structure is defined as:

14

UNICODE_STRING:
+0x000 Length : Uint2B
+0x002 MaximumLength : Uint2B
+0x004 Buffer : Ptr32 Uint2B

This would mean that the driver is attempting to reference the path name of
the process’ executable image. The 0x38 offset is the length of the image path
name and the 0x3c is the pointer to the image path name buffer that actually
contains the path. The reason that the driver would need to get access to the
executable path is outside of the scope of this discussion, but suffice to say that
the method on which it is based is an assumption that may not always be safe
to make, especially under conditions where the process’ parameter information
is not mapped at 0x00020000.

3.3 The Solution

The solution to this problem would be for ATI to come up with an alternate
means by which the process’ image path name can be obtained. Possibilities
for alternate methods include referencing the PEB to obtain the address of the
process parameters (by using the ProcessParameters attribute of the PEB).
This approach is suboptimal because it requires that ATI attempt to reference
fields in a structure that is intended to be opaque and also readily changes be-
tween versions of Windows. Another alternate approach, which is perhaps the
most feasible, would be to make use of the ProcessImageFileName PROCESS-
INFOCLASS. This information class can be queried using the NtQueryInformationProcess
system call to populate a UNICODE STRING that contains the full path to the im-
age that is associated with the handle that is supplied to NtQueryInformationProcess.
The nice thing about this is that it actually indirectly uses the alternate method
from the first proposal, but it does so internally rather than forcing an external
vendor to access fields of the PEB.

Regardless of the actual solution, it seems obvious that assuming that a region
of memory will be mapped at a fixed address in every process is something that
ATI should not do. There are indeed cases where Windows itself requires certain
things to be mapped at the same address between one execution of a process to
the next, but it is the opinion of the author that ATI should not assume things
that Windows itself does not also assume.

15

Chapter 4

Conclusion

Though this document may appear as an attempt to make specific 3rd party
vendors look bad, that is not its intention. In fact, the author acknowledges
having been an antagonistic developer in the past. To that point, the author
hopes that by providing specific illustrations of where assumptions made by 3rd
parties can lead to problems, the reader will be more apt to consider potential
conditions that might become problematic if other applications attempt to co-
exist with ones that the reader may write in the future.

16

Bibliography

[1] Probert, David B. Windows Kernel Internals: Process Architecture.
http://www.i.u-tokyo.ac.jp/ss/lecture/new-documents/Lectures/
13-Processes/Processes.ppt; accessed April 04, 2005.

17

http://www.i.u-tokyo.ac.jp/ss/lecture/new-documents/Lectures/13-Processes/Processes.ppt
http://www.i.u-tokyo.ac.jp/ss/lecture/new-documents/Lectures/13-Processes/Processes.ppt

	Introduction
	McAfee VirusScan Consumer (8.0/9.0)
	The Assumption
	The Problem
	The Solution

	ATI Radeon 9000 Driver Series
	The Assumption
	The Problem
	The Solution

	Conclusion

