
PatchGuard Reloaded

A Brief Analysis of PatchGuard Version 3

September, 2007

Skywing
skywing@valhallalegends.com

http://www.nynaeve.net/

http://www.nynaeve.net/

Abstract

Since the publication of previous bypass or circumvention techniques for Kernel
Patch Protection (otherwise known as “PatchGuard”), Microsoft has continued
to refine their patch protection system in an attempt to foil known bypass
mechanisms. With the release of Windows Server 2008 Beta 3, and later a
full-blown distribution of PatchGuard to Windows Vista and Windows Server
2003 via Windows Update, Microsoft has introduced the next generation of
PatchGuard to the general public (“PatchGuard 3”). As with previous updates
to PatchGuard, version three represents a set of incremental changes that are
designed to address perceived weaknesses and known bypass vectors in earlier
versions. Additionally, PatchGuard 3 expands the set of kernel variables that
are protected from unauthorized modification, eliminating several mechanisms
that might be used to circumvent PatchGuard while co-existing (as opposed
to disabling) it. This article describes some of the changes that have been
made in PatchGuard 3. This article also proposes several new techniques that
can be used to circumvent PatchGuard’s defenses. Countermeasures for these
techniques are also discussed.

Contents

1 Introduction 2

2 Protection Improvements 4
2.1 Multiple Concurrent PatchGuard Check Contexts 4
2.2 Filtering of Exception Codes Used to Trigger PatchGuard Exe-

cution . 5
2.3 Executing PatchGuard Without SEH 8
2.4 Randomized Call Frames in Repurposed DPC Routine Exception

Paths . 10
2.5 Expanded Set of Protected Regions 11

3 Additional Protection Mechanisms 12
3.1 Timer List Obfuscation . 12
3.2 Anti-Debugging Code at PatchGuard Initialization Time 13
3.3 KeBugCheckEx Protection . 14
3.4 Two-Stage Code Deobfuscation 15
3.5 Code Patching Support . 15

4 Bypass Mechanisms and Countermeasures 18
4.1 Hybrid Exception Interception and Memory Searching 18
4.2 Timer DPC Dispatcher and DPC Dispatching 22
4.3 Canceling the PatchGuard Timer(s) 23
4.4 Page-Table Swap . 24
4.5 DPC Exception Handler Patching 26
4.6 System Call MSR Swap . 27

5 Conclusion 28

1

Chapter 1

Introduction

PatchGuard is a controversial feature of Windows x64 editions, starting with
Windows Server 2003 x64 / Windows XP x64, and continuing on with Windows
Vista x64 and Windows Server 2008 x64. The design goals behind PatchGuard
are to prevent the kind of rampant hooking and modification of various kernel
code and data structures that has been so common on x86 versions of Windows.
Microsoft has stated that the vast majority of kernel crashes are caused by
third party drivers, and the author’s experiences with Windows firmly support
this supposition. Because accessing internal kernel data structures and hooking
kernel functions typically requires intricate synchronization with the rest of the
system in order to be performed in a completely safe fashion, especially on
multiprocessor machines, many third party drivers that perform these sorts of
dangerous tasks have historically made egregious mistakes that have often lead
to system stability or a compromise of system security. The latter is especially
common in cases where third party programs hook functions, such as system
calls, and subsequently fail to perform sufficient parameter validation.

Microsoft’s solution to this problem is to attempt to forcibly prevent third party
code from making unauthorized modifications to internal kernel data structures
and code through technical means in addition to discouraging developers from
performing such tasks. However, due to the nature of how the Windows kernel
(and its supporting drivers) are designed, it is not feasible for kernel mode
drivers to run at a lower effective privilege level than the kernel itself. This
poses a problem with respect to Microsoft’s goal of blocking unauthorized kernel
patches due to the fact that there is no hardware-enforced separation between
the kernel itself and third-party drivers. As such, said third party drivers have
free reign to manipulate kernel code and data as desired.

Although emerging technologies such as TPM and hardware-assisted virtualiza-
tion (hypervisors) may eventually provide a mechanism to deploy a hardware-

2

enforced boundary between certain key parts of the kernel and the third party
drivers that interact with it, such an approach is not generally applicable to
most computers sold today, given the current state of the technology involved
(with respect to both hardware and software capabilities). Lacking a com-
plete, hardware-enforced solution, Microsoft has turned to other approaches to
dissuade third party software from making unauthorized kernel modifications.
Specifically, the resulting kernel patch protection mechanism (”PatchGuard”) is
instead based on highly obfuscated code that, while running at the same effec-
tive privilege level as both the kernel itself and third party drivers, is designed to
be resilient against detection and/or modification by third party drivers. This
code is responsible for periodically checking the integrity of key kernel code
and data structures and will bring down the system if such modifications are
detected. By virtue of the fact that attempting to blithely patch the kernel as
was once possible on Windows x86 editions, attempting to perform the same
operations will result in a system crash on x64 versions of Windows. As such,
third party drivers are effectively preventing from making such modifications on
a large-scale basis with respect to code deployed on customer systems.

However, like all systems that are founded upon the principal of security through
obscurity, PatchGuard has inherent weaknesses. These weaknesses can be ex-
ploited by third party drivers to either disable PatchGuard entirely or circum-
vent its checks altogether while peacefully co-existing with PatchGuard. Mi-
crosoft is fully aware of these deficiencies with respect to the fundamental ap-
proach taken by PatchGuard and has resorted to periodically updating Patch-
Guard in such a way as to block known public bypass techniques. The net
result is that Microsoft gives the impression of a “moving target” to any ISV
that would defy Microsoft’s wishes with respect to circumventing PatchGuard.
This helps to show that any code designed to stop or disable PatchGuard may
become invalidated at some point in the future such as when Microsoft releases
a new update for PatchGuard. This has resulted in a small arms race with
code to circumvent PatchGuard being written by third parties, and Microsoft
responding by developing and deploying countermeasures in the form of an up-
dated version of PatchGuard that is not susceptible to these bypass techniques.
This cycle has continued through several iterations already; in fact, PatchGuard
is now being deployed to the general public in its third iteration.

3

Chapter 2

Protection Improvements

PatchGuard 3 implements several incremental improvements designed to pro-
tect PatchGuard from third party code attempting to disable it as compared
to PatchGuard 2. The majority of the alterations to PatchGuard’s self-defense
logic appear to be direct responses to previously published, publicly-known by-
pass techniques, rather than general improvements meant to make PatchGuard
3 more resilient to analysis and attack. In this vein, while the alterations to
PatchGuard 3 (over PatchGuard 2) are effective at disabling most previously-
published bypass mechanisms that the author is aware of, it is not exceedingly
difficult to alter many previous attack mechanisms to be effective against Patch-
Guard 3. Many of the protection systems that were implemented in PatchGuard
2 are still present in PatchGuard 3 in some form or another, though some of
them have been altered to resist previously-published attacks.

This chapter will describe a number of specific improvements that have been
made.

2.1 Multiple Concurrent PatchGuard Check Con-
texts

In previous PatchGuard releases, there existed a single PatchGuard check con-
text that would periodically be used to verify the integrity of protected regions.
Some bypass techniques relied on the fact that there existed only one Patch-
Guard context by virtue of disabling any invasive kernel patching that would be
required to “catch PatchGuard in the act” after locating PatchGuard. Patch-
Guard 3 improves upon this by creating at least one PatchGuard context if
PatchGuard is enabled, with a probability of a second context being initial-

4

ized at system boot time1. Both PatchGuard check contexts, which include
all of the data used by PatchGuard to check system integrity (including the
self-decrypting check routine in non-paged pool memory), operate completely
independently if two contexts happen to be used for a particular system boot.

There are several advantages to randomly creating more than one check con-
text. First of all, because the second context is not always created, an element
of uncertainty is (theoretically) introduced into the testing and development
process for PatchGuard bypass techniques, as it is possible that at first glance,
an individual that is researching PatchGuard 3 might not notice that there is
a chance to create more than one context. This may result in lost time during
the debugging process, as some bypass techniques are affected by the number
of active contexts. For example, the original bypass technique described by the
author for PatchGuard 2 [1] effectively turned itself off after the first positive in-
dication that PatchGuard was caught (although in this particular instance, the
PatchGuard-catching hooks could have allowed to remain in place afterwards).

A better example of bypass techniques that might be affected by this sort of
scheme are those that rely on searching system pool memory for a sign of
PatchGuard. For example, a theoretical bypass scheme that operates by pro-
actively locating the PatchGuard context in non-paged pool and disabling it
somehow (perhaps by rewriting the self-decrypting code stub to expand into a
no-operation function) might run afoul of this approach randomly during test-
ing if it were not designed to re-try a pool memory scan after a positive hit
on PatchGuard. It also eliminates the degree of confidence that such memory
scan approaches provide, as previously, if one had a way to locate the Patch-
Guard context in non-paged pool memory, one would either know for certain
that PatchGuard had in fact been disabled by getting a single hit (which could
be taken as an indication that it would now be safe to perform actions blockedg
by PatchGuard). With multiple check contexts having a probability to run, it
is no longer possible for a bypass technique to have logic along the lines of “if a
PatchGuard context has been located and disabled, then it is safe to continue”,
because there may exist a non-constant number of contexts in the wild.

2.2 Filtering of Exception Codes Used to Trig-
ger PatchGuard Execution

Like PatchGuard 2, and PatchGuard 1 before it, the third iteration of Patch-
Guard is primarily executed through an unhandled exception in a DPC routine
which, through the use of a series of structured exception handlers, eventually
results in the self-decrypting PatchGuard stub being called in non-paged pool
memory (based off of the DPC arguments). This presented itself as a liability,

1This is randomized based on the processor time stamp counter, as all other PatchGuard
randomization is done

5

as evidenced by the previous article [2] published on Uninformed on the subject
of disabling PatchGuard (release 2). The problem with using SEH to trigger ex-
ecution is that there are a number of points in the SEH dispatching mechanism
that can easily be modified by an external caller in order to gain execution after
an exception is raised, but before a registered exception handler itself might be
called.

Previous techniques exploited this weakness by positioning themselves in af-
ter the access violation exception raised when a PatchGuard-repurposed DPC
routine dereferenced a specially-crafted invalid pointer argument but before
the SEH logic that invokes the PatchGuard check context in response to the
access violation exception. Specifically, the operating system exported rou-
tine used by the Microsoft C/C++ compiler for all compiler-generated SEH
frames, C specific handler, was targeted by bypass attempts described in
the aforementioned articles. As the SEH frame responsible for running Patch-
Guard appears to have been written in C for PatchGuard releases 1 and 2,
C specific handler would be called before the user-supplied SEH logic which
would be responsible for executing the PatchGuard integrity check logic con-
tained within the current PatchGuard context. At this point, a bypass technique
need only abort the execution of the PatchGuard check routine and cleanly ex-
tricate itself from the call stack to a known-good location in order to disable
PatchGuard.

However, in order for such a bypass mechanism to properly function, one would
need to ensure that the particular exception being examined by C specific handler
is in fact PatchGuard and not a legitimate kernel mode exception. Applying
a PatchGuard-style bypass to the latter case would be disastrous and almost
certainly result in the system crashing or being corrupted immediately after
the fact. Given this, positively identifying an exception from the exception
dispatcher interception point is key to any bypass technique built upon excep-
tion dispatcher redirection. While the previous two PatchGuard releases made
identifying PatchGuard a trivial task. In both cases, a special form of invalid ad-
dress, a “non-canonical address”, is dereferenced to trigger the access violation
that ultimately results in PatchGuard’s check context being executed2.

The advantage of using a non-canonical address is clear when one examines the
PatchGuard execution environment for a moment. In Windows kernel mode pro-
gramming, it is not generally possible to blindly dereference a bogus kernel mode
pointer. This often results in a sequence of events that bring down the system,
depending on where the dereferenced location is. A non-canonical address is a
special (undocumented) exception to this rule, as the processor reports the ex-
ception via a general protection fault and not the typical page fault mechanism.
In this case, the operating system reports the exception as an access violation
related to an access of the highest kernel address (0xFFFFFFFFFFFFFFFF).

2A non-canonical address is an address that does not fall within the subset of a 64-bit
address space presented by modern x64 processors

6

This distinct signature can be used to locate and disable PatchGuard in a rel-
atively safe fashion, as bogus kernel mode addresses should never make it to
SEH dispatching (in kernel mode) unless the system is about to crash due to
a fatal driver or kernel bug (PatchGuard being a special case). Thus, it was
previously possible to positively identify PatchGuard by looking for an access
violation that referenced 0xFFFFFFFFFFFFFFFF.

PatchGuard 3 improves the situation somewhat by performing some pre-filtering
of the exception data through an exception handler written in assembly (which
thus does not invoke C specific handler) before the C specific handler
based logic that actually invokes the PatchGuard check routine is executed.
Specifically, the pre-filtering exception handler, whose code is given below, al-
ters the exception code to take on a random value which overlaps with many
valid kernel mode exceptions. For example, some status codes that are applica-
ble to the file system space are used, such as STATUS INSUFFICIENT RESOURCES,
STATUS DISK FULL, STATUS CANT WAIT. Additionally, the exception address is
altered as well (in some cases even set to be pointing into the middle of an
instruction), and the dereferenced address (the second exception parameter for
access violations) is also set to a randomized value. After these alterations
are made, the assembly-language exception handler passes control on to the
C specific handler based exception handler, which invokes PatchGuard. An-
notated disassembly for one of the assembly-language pre-filter exception han-
dlers is provided below:

;

; EXCEPTION_DISPOSITION

; KiCustomAccessHandler8 (

; /* rcx */ IN PEXCEPTION_RECORD ExceptionRecord,

; /* rdx */ IN ULONG64 EstablisherFrame,

; /* r8 */ IN OUT PCONTEXT ContextRecord,

; /* r9 */ IN OUT struct _DISPATCHER_CONTEXT* DispatcherContext

;);

KiCustomAccessHandler8 proc near

test [rcx+_EXCEPTION_RECORD.ExceptionFlags], 66h

loc_14009B4C7:

jnz short retpoint

rdtsc

; Randomize ExceptionInformation[1]

; (This is the "referenced address" for

; an access violation exception.)

;

; (Note that rax is not set to any

; specific defined value in this

; context. It depends upon the value

; that RtlpExecututeHandlerForException

; and by extension RtlDispatchException

; last set rax to.)

mov [rcx+(_EXCEPTION_RECORD.ExceptionInformation+8)], rax

xor [rcx+(_EXCEPTION_RECORD.ExceptionInformation+8)], rdx

shr eax, 5

and eax, 70h

sub [r8+98h], rax

7

and edx, 7Fh

or edx, 0C0000000h

; Set ExceptionCode to a random value. The code

; always has 0xC0000000 set, and the lowest byte

; is always masked with 7F. This often results

; in an exception code that appears like a

; legitimate exception code.)

mov [rcx+_EXCEPTION_RECORD.ExceptionCode], edx

lea rax, loc_14009B4C7+1

; Set ExceptionAddress to a bogus value. In this case,

; it is set to in the middle of an instruction. This

; may interfere with attempts to unwind successfully from

the exception.

mov [rcx+_EXCEPTION_RECORD.ExceptionAddress], rax

; Set Context->Rip to the same

; bogus exception address value.

mov [r8+0F8h], rax

and qword ptr [r8+88h], 0

retpoint:

mov eax, 1

retn

KiCustomAccessHandler8 endp

As a direct result of scrubbing the exception and context records by the assembly-
language exception routine, it is no longer possible to use the old mechanism
of looking for an access violation referencing 0xFFFFFFFFFFFFFFFF in order to
differentiate a PatchGuard exception from the many legitimate kernel mode ex-
ceptions. In other words, PatchGuard attempts to hide in plain sight amongst
the normal background noise of kernel mode exceptions, the vast majority of
which exist inside filesystem-related code.

2.3 Executing PatchGuard Without SEH

One recurring theme that has continued to remain a staple for PatchGuard
since its inception is the use of structured exception handling to obfuscate the
calls to PatchGuard. The intention here is to use the many differences of SEH
between x64 and x86, and the lack of disassembler support for x64 SEH to make
it difficult to understand what is happening when calls to PatchGuard are being
made. Ironically, this use of x64 SEH as an obfuscation mechanism has been a
catalyst for much of the author’s research [2] into Windows x64 SEH. Today, it
is the author’s opinion that x64 exception handling is now publicly documented
to an extent that is comparable (or even exceeds) that available for x86 SEH.

Although x64 SEH may have been useful as an obfuscation technology initially,
it had clearly worked its way up to a major liability after PatchGuard 2 had
been released. This is due to the fact that SEH-related aspects of PatchGuard
had been successfully used to defeat PatchGuard on multiple occasions. With

8

the advent of PatchGuard 3, the authors of PatchGuard siezed the opportunity
to extricate themselves in some respect from the liability that x64 SEH had
become.

PatchGuard 3 introduces a special mode of operation that allows it to function
without using SEH. This is a significant change (and improvement) with respect
to how PatchGuard has traditionally operated. It eliminates a major class of
single points of failure in that the exception dispatching path is particularly
vulnerable to external interference in terms of third party drivers intercepting
SEH dispatching before control is transferred to actual exception handlers. The
SEH-less mode of PatchGuard 3 operates by copying a small section of code
into non-paged pool memory (as part of a PatchGuard context block). This
code is then referenced by a timer object’s DeferredRoutine at the non-paged
pool location in question. The code referred to by the timer object is essentially
a stripped down version of what happens when any of the re-purposed DPC
routines are invoked by PatchGuard: it sets up a call to the first stage self-
decrypting stub that ultimately calls the system check routine.

By completely eliminating SEH as a launch vector for PatchGuard, many by-
pass techniques that hinged on being able to catch PatchGuard in the SEH
dispatching code path are completely invalidated. In an example of defense in
depth in terms of software protection systems, the old, SEH-based system is still
retained (with the previously mentioned modifications), such that a would-be
attacker now has multiple isolated launch vectors that he or she must deal with
in order to block PatchGuard from executing. Annotated disassembly of the
direct call routine that is copied to non-paged pool and invoked without SEH
is presented below:

KiTimerDispatch proc near

pushf

sub rsp, 20h

mov eax, [rsp+28h+var_8]

xor r9d, r9d

xor r8d, r8d

mov [rsp+28h+arg_0], rax

; [rcx+40] -> PatchGuard Decryption Key

mov rax, [rcx+40h]

mov rcx, 0FFFFF80000000000h

xor rax, rdx

; Form a valid address for the PatchGuard context block by

; xoring the decryption key with the DeferredContext

; argument.

or rax, rcx

; Set the initial code for the stage 1 self-decrypting stub.

mov rcx, 8513148113148F0h

mov rdx, [rax]

mov dword ptr [rax], 113148F0h

xor rdx, rcx

mov rcx, rax

; Call the stage 1 self-decrypting stub.

call rax

9

add rsp, 20h

pop rcx

retn

KiTimerDispatch endp

2.4 Randomized Call Frames in Repurposed DPC
Routine Exception Paths

One of the bypass vectors proposed for PatchGuard 2 was to intercept execu-
tion at C specific handler, detect PatchGuard, and resume execution at the
return point of the PatchGuard DPC (i.e. inside the timer or DPC dispatcher).
This is trivially possible due to the extensive unwind metadata present on Win-
dows x64 combined with the fact that a DPC that has been re-purposed by
PatchGuard does no useful work (other than invoking PatchGuard) and has no
meaningful effect on any out parameters or return value.

In order to counteract this weakness, PatchGuard 3 introduces a random number
of function calls when a re-purposed DPC is called, but before any exception
is triggered. The intent with this randomization of the call frame stack is to
invalidate the approach of always unwinding one level deep in order to effect a
return from the DPC routine in question. Because there are a random number
of call frames between the point at which an exception is raised and the start of
the PatchGuard DPC routine, and the fact that the PatchGuard DPC routines
are not exported, it is more difficult to safely return out of a PatchGuard DPC
routine from the anywhere in the SEH dispatching code path.

An example of the call frame randomization code is provided below (in this case,
ecx is initialized to small, random number that denotes the number of calls to
make). There are a number of routines in the form of KiCustomRecurseRoutineN
where N is [0..9], each identical.

KiCustomRecurseRoutine4 proc near

sub rsp, 28h

dec ecx

jz short retpoint

call KiCustomRecurseRoutine5

retpoint:

mov eax, [rdx]

add rsp, 28h

retn

KiCustomRecurseRoutine4 endp

Although unwinds can still be performed, an attacker would need to be able to
locate the actual return address of the PatchGuard DPC routine which might
involve differentiating between the bogus KiCustomRecurseRoutine calls and
the actual call into the DPC routine itself.

10

2.5 Expanded Set of Protected Regions

With the release of PatchGuard 3, Microsoft has added to the list of kernel global
variables that are protected from unauthorized modification. Most notably,
PatchGuard now appears to take an interest in PsInvertedFunctionTable, which
was proposed as a key way to patch the kernel ”under PatchGuard’s nose”, as
it were, by providing an un-protected mechanism to gain execution at any point
in the kernel that is traversed by an exception.

11

Chapter 3

Additional Protection
Mechanisms

PatchGuard 3 and PatchGuard 2 both share some additional protection mecha-
nisms that have not been previously described. This chapter includes a descrip-
tion of these protection mechanisms.

3.1 Timer List Obfuscation

PatchGuard 2 and PatchGuard 3 employ an obfuscation scheme that is used
to obfuscate timer and DPC object pointers in the timer list. This obfus-
cation scheme hinges around two special kernel variables, KiWaitAlways and
KiWaitNever that represent two random obfuscation keys that are calculated
at boot time. These obfuscation keys are used to encode various pointers (such
as links to DPC objects in a KTIMER object residing in the kernel timer list)
that are intended to be protected from outside interference. For example, the
following algorithm is used to decode the KDPC link in a KTIMER object when a
timer DPC is going to be executed at expiration:

ULONGLONG Deobfuscated;

PKDPC RealDpc;

Deobfuscated = Timer->Dpc ^ KiWaitNever;

Deobfuscated = _rotl64(Deobfuscated, (UCHAR)KiWaitNever);

Deobfuscated = Deobfuscated ^ Timer;

Deobfuscated = _byteswap_uint64(Deobfuscated);

Deobfuscated = Deobfuscated ^ KiWaitAlways;

RealDpc = (PKDPC)Deobfuscated;

12

By virtue of being non-exported kernel variables, the original intention of such a
scheme was to make it difficult for third party drivers to easily interfere with the
timer list or certain other protected pointers. However, the algorithm itself is
fairly easy to understand once one locates code that references it (such as most
any timer-related code in the kernel), which simply leaves detecting the values
of KiWaitAlways and KiWaitNever at runtime as the only remaining protection
for the timer list to DPC object obfuscation.

Ironically, the kernel debugger extension !kdexts.timer implements the de-
coding algorithm (in kdexts!KiDecodePointer) so that a valid timer list can
be presented to the user if the timer display command is invoked. Because the
kernel debugger has access to PDB symbols for the kernel, it can trivially locate
KiWaitAlways and KiWaitNever.

3.2 Anti-Debugging Code at PatchGuard Ini-
tialization Time

As with PatchGuard 2, PatchGuard 3 includes a sizable amount of anti-debugging
code at runtime that is intended to frustrate attempts to step through the Patch-
Guard initialization routines with a debugger. Most of this code is based upon
checking if a debugger is present while the PatchGuard initialization routines
are executing (which should not typically occur as the PatchGuard initializtion
routines are only called if a debugger is not attached), and if a debugger is
so detected, disable interrupts and entering a spin loop so as to unrecoverably
freeze the system.

Although this anti-debugging code may appear intimidating at first, disabling
them is only a matter of locating all references to KdDebuggerNotPresent within
the PatchGuard initialization routine and patching out the checks into the de-
bugger. For example, the author used the following set of commands in the
debugger at initialization time to disable the anti-debugging checks for Win-
dows Vista x64 SP0, kernel version 6.0.6000.16514:

bp nt!KeInitAmd64SpecificState + 12 "r @edx = 1 ; r @eax = 1 ; g"

bp nt!KiFilterFiberContext

eb nt!KiFilterFiberContext+0x20 eb

eb nt!KiFilterFiberContext+0x19a eb

eb fffff800‘01c63d22 eb

eb fffff800‘01c64686 eb

eb fffff800‘01c652be eb

eb fffff800‘01c65334 eb

eb fffff800‘01c65880 eb

eb fffff800‘01c65a65 eb

eb fffff800‘01c67479 eb

eb fffff800‘01c68798 eb

13

eb fffff800‘01c6a940 eb

eb fffff800‘01c6b7a9 90 90

eb fffff800‘01c6b7dd eb

eb fffff800‘01c6bad9 eb

eb fffff800‘01c6d0e7 eb

eb fffff800‘01c6d2f6 eb

eb fffff800‘01c6d650 eb

eb fffff800‘01c65c3a 90 90 90 90 90 90

eb fffff800‘01c690b1 90 90 90 90 90 90

3.3 KeBugCheckEx Protection

One of the first bypass mechanisms proposed for PatchGuard 1 was to hook the
code responsible for bugchecking the system[4]. From there, an attacker would
simply resume normal system execution.

There are several defensive mechanisms in place to prevent this. In the the
current version of PatchGuard, the entire contents of the thread stack are filled
with zeros, making it difficult to resume execution of whichever thread was re-
sponsible for calling into PatchGuard. Furthermore, PatchGuard appears to
make a copy of KeBugCheckEx at system initialization time, and copy this
version over the actual code residing within the kernel at runtime just before
bringing down the system in a bug check. This is clearly visible by making a
modification to KeBugCheckEx in the debugger just as one enters the Patch-
Guard check context, and then setting a breakpoint on the internal function in
the PatchGuard context to call KeBugCheckEx after clearing the stack and all
registers. If one then examines KeBugCheckEx, any modifications that have
been made will have vanished.

Additionally, PatchGuard appears to disable DbgPrint (patching it out with
a ”ret” opcode) before calling KeBugCheckEx. This may have been a (failed)
attempt to prevent easy access to execution within KeBugCheckEx without
actually patching KeBugCheckEx itself, which would circumvent the aformen-
tioned protection on modifications to the bugcheck code itself. (KeBugCheckEx
ordinarily utilizes DbgPrintEx to display a banner to the debugger when a bug
check occurs. However, because PatchGuard only patches DbgPrint, there is
no little to no effect in terms of what ends up happening when the bug check
finally does happen.)

This code can be seen in the PatchGuard check routine, just before a call to
the KeBugCheckEx wrapper is made. The pointer to DbgPrint is established
during PatchGuard initialization at boot time.

mov rax, [rbx+PATCHGUARD_CONTEXT.DbgPrint]

mov byte ptr [rax], 0C3h ; ’+’ ; ret

14

3.4 Two-Stage Code Deobfuscation

One of the more interesting defensive features of PatchGuard 2 and PatchGuard
3 is the mechanism by which it obfuscates the PatchGuard check context, or the
code and data necessary to verify system integrity. PatchGuard contexts are
obfuscated such that they are completely randomized in-memory while inactive,
and change their location and obfuscation keys (and thus contents) each time
the context is invoked to check system integrity.

The decryption phase of PatchGuard is split into two stages. The first stage
is essentially a small stub that remains completely obfuscated in-memory until
just before it is called. The caller overwrites the first instruction in the stub
that is called with a ”lock xor qword ptr [rcx], rdx” instruction. The arguments
to the stub are the address of the stub itself (in rcx), and the decryption key (in
rdx). Thus, the first instruction now modifies itself (and more importantly the
subsequent instruction, as each instruction is 4 bytes long but modifies 8 bytes
of opcode bytes), which results in being another xor instruction. A small series
of these xor instructions continues until the second stage of the decoding stub
is completely decoded.

At this point, the second stage of the decoding stub is plaintext and may now
execute. The second stage consists of a loop of xor operations starting at the
end of the PatchGuard context and moving backward until the entire check
routine is decoded. Additionally, the decryption key is shifted each xor round
during the second stage decoding process.

After the second stage decoding loop is complete, control is transferred to the
now-plaintext integrity check routine (all of the supporting data, such as critical
function pointers into the kernel, will also have been translated into plaintext
at this point by the second stage decoding loop).

Source code to a basic program to decrypt a PatchGuard memoy context is
included with the article. The program expects to be supplied with a file con-
taining ”dq” logs from the kernel debugger that cover the entire memory context,
along with the decryption key (at KDPC + 0x40) and KDPC-¿DeferredContext
values.

3.5 Code Patching Support

Given PatchGuard’s penchant for blocking attempts to patch the kernel, one
would think that all kernel code is essentially expected to be fixed in stone at
boot time. However, this is not really the case. There are a number of approved
kernel patches that PatchGuard supports. For example, several functions (such
as SwapContext) can be patched in approved ways if hypervisor support is

15

enabled. In the case of SwapContext, for instance, a runtime patch is made
to redirect execution to EnlightenedSwapContext through a jump instruction
being written to the start of the routine. PatchGuard appears to detect and
permits patches to these functions through special exemptions (one can observe
the address of functions such as SwapContext being stored in the PatchGuard
context at initialization time, presumed to be for such a purpose).

The code responsible for checking the integrity of the SwapContext patch is
provided below. Because the check ensures that a branch can only occur to
EnlightenedSwapContext, it would be difficult to utilize this code to perform
an arbitrary patch at SwapContext.

cmp rdi, [rbx+PATCHGUARD_CONTEXT.SwapContext]

jnz short NotSwapContextExemption

cmp byte ptr [rdi], 0EBh ; ’d’ ; backward jmps (short)

jnz short NotSwapContextExemption

cmp byte ptr [rdi+1], 0F9h ; ’’

jnz short NotSwapContextExemption

cmp byte ptr [rdi-5], 0E9h ; ’T’ ; jmp (long)

jnz short NotSwapContextExemption

mov rcx, [rbx+PATCHGUARD_CONTEXT.EnlightenedSwapContext]

movsxd rax, dword ptr [rdi-4]

sub rcx, rdi

cmp rax, rcx

jz short BadSwapContextHook

There also exists a second set of patches that PatchGuard must allow for com-
patibility with older processors. Very early releases of x64 processors by Intel did
not implement the prefetch instruction, and so the kernel has support for detect-
ing an illegal opcode fault on a prefetch instruction, and reacting by patching
out the prefetch opcode on-the-fly. However, this sort of on-the-fly patching is
not normally permitted by PatchGuard (for obvious reasons), at least not with-
out special support. During initialization, PatchGuard generates some code that
executes a prefetch operation, and then checks whether the the count of patched
prefix instructions was incremented after executing the patch code. Assuming
that the processor is an older model without prefetch support, then a special
exemption (the ”prefetch whitelist”) is activated the exempts a list of RVAs
from the image base from PatchGuard’s checks. This list of RVAs is stored in a
binary resource appended to ntoskrnl.exe (named ”PREFETCHWLIST”).

The code for detecting if the prefetch exemption should be enabled at boot time
is as follows (the result of the check is, for Windows Server 2008 Beta 3, stored
at offset 2B1 into the PatchGuard context):

call KeGetPrcb

mov ecx, 2

cmp [rax+63Dh], cl ; Prcb->CpuVendor

mov [rsp+0EC8h+var_D48], rax

jnz short SkipEnablePrefetchPatchExemption

16

lea rdx, [rsi+214h] ; PrefetchRoutineCode

mov dword ptr [rdx], 0C3090D0Fh ; prefetch [rcx] ; ret

mov ebx, cs:KiOpPrefetchPatchCount

lea rcx, [rsp+0EC8h+arg_18]

call rdx

mov ecx, cs:KiOpPrefetchPatchCount

cmp ebx, ecx

jz short SkipEnablePrefetchPatchExemption

mov [rsi+2B1h], dil ; EnablePrefetchPatchExemption

SkipEnablePrefetchPatchExemption:

;

; Initialization continues ...

;

mov eax, 100000h

17

Chapter 4

Bypass Mechanisms and
Countermeasures

Like PatchGuard 2, it would be folly to state that PatchGuard 3 is invulnerable
to assault by third party driver code intent on performing operations blocked
by PatchGuard. There are many possible attacks for the new defenses in Patch-
Guard 3 (as well as several possible countermeasures that Microsoft could take
in order to break the proposed bypass mechanisms in a future PatchGuard it-
eration). This article will describe specific attacks that are capable of defeating
PatchGuard 3.

4.1 Hybrid Exception Interception and Memory
Searching

As PatchGuard 3 utilizes completely randomized (self-decrypting) blocks of code
and data for its constituent PatchGuard contexts in the SEH execution case,
it is not generally possible to trivially locate and disable PatchGuard contexts
through a non-paged pool scan. Additionally, due to PatchGuard 3’s break
on relying upon SEH to invoke PatchGuard in all cases, it is also not generally
possible to disable PatchGuard 3 reliably via interception of the SEH dispatching
code path.

While these defenses do complement one another, there still exists weaknesses
that can be exploited by a third party. Specifically, when PatchGuard is running
through a re-purposed DPC routine that is invoked via SEH, it is vulnerable
in that the SEH dispatching code path can be intercepted to locate (and dis-
able) PatchGuard just before it is executed. Furthermore, in the case where

18

PatchGuard runs without any SEH obfuscation, it is vulnerable to a memory
search, as there is (necessarily) some static code placed in non-paged pool mem-
ory which makes the translation between the DPC function calling convention
and the PatchGuard stage 1 decryption routine’s calling convention.

By combining a memory search approach with the previously described SEH
interception approach, it is possible to attack both launch vectors of PatchGuard
simultaneously, with the effect of disabling it no matter which vector(s) are used
in a particular boot.

However, there are still some sticking points that need to be resolved in the SEH
interception case. As previously mentioned, the SEH-obfuscation-based launch
vector was significantly improved over PatchGuard 2, with obfuscation of the
exception information and randomization of the call stack from the point of view
of the exception dispatcher logic itself. These obstacles must be overcome in
order to successfully mount an attack using this approach against PatchGuard
3.

The first problem relating to the obfuscation and randomization of the excep-
tion information turns out to not be the roadblock that one might think at
first glance. There are some weaknesses of the obfuscation logic that allow the
true colors of the exception to show through if one is clever about examining
the information available at the point of C specific handler. Furthermore,
it is also possible to hook at a lower level than C specific handler, such
as KiGeneralProtectionFault (easily located by examining the IDT), which
would get one in before the assembly-language exception handler logic has a
chance to fudge the exception information.

Although the KiGeneralProtectionFault vector is easier to implement in that
it completely bypasses one of the new defensive mechanisms with respect to
the SEH-related PatchGuard execution code path, it is again still possible to
attack PatchGuard using C specific handler by relying upon information
leakage when C specific handler is called. Specifically, all exceptions altered
by PatchGuard originate within the confines of the kernel itself, all of the excep-
tions have two parameters (most of the ”legitimate” versions of exceptions like
STATUS INSUFFICIENT RESOURCES always have zero parameters, because they
originate from within RtlRaiseStatus which never stores any exception pa-
rameters in the exception record), and somewhere in the call stack the kernel
routine responsible for dispatching DPCs or timer DPCs is going to be present.

By combining these facts, it is possible to make a highly accurate determination
as to whether an exception is caused by PatchGuard. The latter piece of infor-
mation (checking whether the routine responsible for calling the DPC or timer
DPC is in the call stack) also proves valuable when one must later counteract
the second defense added to the SEH code path, that is, the randomization of
the call stack.

In order to determine whether the DPC or timer DPC dispatcher is in a given

19

call stack, it is first necessary to locate it in the kernel image. There are some
complications here. First of all, the timer DPC dispatcher routine has three
call instructions that can call a timer DPC, not all of which are readily trig-
gerable. Additionally, neither the timer DPC dispatcher or the DPC dispatcher
are exported.

However, while it is not possible to simply ask for the addresses of those two
routines, it is possible to find them programmatically by requesting that a DPC
and a timer DPC be executed through the documented APIs for DPCs and timer
DPCs. From within the DPC or timer DPC routine, it is then possible to locate
the return address via the use of the ReturnAddress() compiler intrinsic. This
works because the return address will be guaranteed to reside within the DPC
or timer DPC dispatcher. Alternatively, an assembly language routine could be
written that simply examines the current pointer at [rsp] at the time of the call.

This still leaves a problem in the timer DPC dispatcher case, as there are three
call instructions, and it is not easy to observe calls from all three call sites within
the timer DPC dispatcher on-demand, since it is necessary to programmatically
find the return points at runtime. However, once again, the very same metadata
that is critical to x64 SEH support dooms PatchGuard with respect to this
approach, as it is possible to go from an arbitrary instruction in the middle of
any function to the start of that function, by following chained unwind metadata
until an unwind metadata block is reached that has no parent[3]. This top-level
unwind metadata block has a reference to the first instruction in the function.
Now that it is possible to locate the start of a function from any arbitrary valid
instruction location within that function, it becomes trivial to determine if two
addresses reside in the same function; to do this, one must only follow the unwind
metadata chain for both addresses, and then check to see whether both top-
level unwind metadata blocks refer to the same function. With this technique,
combined with the ability to locate at least one call site within the timer DPC
dispatcher, it again becomes possible to identify the timer DPC dispatcher, as
no matter which call site is used, it will be guaranteed that the call site resides
within the timer DPC dispatcher routine KiTimerExpiration. By comparing
top-level unwind metadata blocks, it becomes possible to authoritatively discern
whether any arbitrary instruction resides within the timer DPC dispatcher or
not.

It is also possible to bypass the alterations to the exception (and instruction
pointer) addresses that KiCustomAccessHandler (the assembly-language ”first
chance” exception handler routines for the repurposed DPC routines) makes by
performing a stack trace from the C specific handler itself instead of relying
on the context record or exception handler information. This is because the call
stack is conveyed as if the faulting instruction in the repurposed DPC call stack
was the site of a call to KiGeneralProtectionFault. As a result, it is possible to
substitute the current context for the context presented to C specific handler
for unwind purposes. This also provides a layer of defense against Microsoft
altering other registers in the exception handler context in future PatchGuard

20

revisions, which could cause manual unwinds to return incorrect register values,
resulting in system crashes after an unwind intended to effect a hard return out
of the re-purposed DPC routine.

Furthermore, by clever usage of this mechanism for determining whether an
address resides within a particular function, it is also now possible to determine
the real return address for any given re-purposed DPC routine. Specifically,
by checking whether each address in the call stack as of C specific handler
is within either the DPC dispatcher or the timer DPC dispatcher, one can
determine whether a given call frame corresponds to the call site that called the
re-purposed DPC routine or not, irrespective of any random amount of bogus
function calls that may be layered on top of the re-purposed DPC. This in turn
defeats the remaining improvement to the SEH PatchGuard code path, as it
once again becomes possible to cleanly unwind from any arbitrary point in the
PatchGuard exception callstack.

Through the combination of the ability to either circumvent entirely or ”see
through” the deception that KiCustomAccessHandler creates over the excep-
tion information passed to C specific handler, and the ability to recover the
correct return address of a repurposed DPC routine, it now becomes possible to
disable the SEH control flow path of PatchGuard 3. This leaves the remaining
problem of locating the non-SEH control flow path of PatchGuard in non-paged
pool memory as the last piece of the puzzle with respect to this method of
disabling PatchGuard. However, locating the trampoline routine that adapts
a DPC routine call to a PatchGuard stage 1 decryption stub call is trivial, as
the adapter trampoline is static and contains a very recognizable signature in
terms of the constants written to the beginning of the decryption stub. In or-
der to disable the trampoline routine, it is enough to simply patch it with a
”ret” instruction (effectively the same thing as the SEH bypass technique, but
as implemented in code instead of a virtual unwind).

The source code to a working implementation of the hybrid exception intercep-
tion and memory searching bypass technique for PatchGuard 3 is included with
the article.

Although this approach is successful in disabling the current iteration of Patch-
Guard 3, it is not without its weaknesses. Microsoft could, for instance, disable
this technique via altering the SEH-less PatchGuard DPC-to-decryption-stub
adapter to not be static (i.e. randomization of the code placed into non-paged
pool at runtime). There are also a number of assumptions of the SEH-based
approach that could be invalidated by Microsoft in a future PatchGuard release.
However, in keeping with the fact that it is possible to gain control flow at a
lower level than the exception dispatcher path itself (i.e. patching KiGeneral-
ProtectionFault), the author feels that it would be better to focus on removing
relevant information before any exception handlers (assembler or C-language)
are called instead of after the defining moment (in other words, the exception)
occurs, as it is the exception that presents the first easily-accessible interception

21

point to an outside attacker.

4.2 Timer DPC Dispatcher and DPC Dispatch-
ing

Although PatchGuard 3 eliminates SEH as a single point of failure with re-
spect to executing the system integrity checks, the timer and DPC dispatchers
continue to remain attractive targets. One simple bypass mechanism is to lo-
cate the call sites in both routines (such as by recording the addresses of both
dispatcher routines as described in bypass technique 1, and then performing
disassembly to locate and patch all call sites. At each call site, it is possible to
detect that PatchGuard is being executed by looking for either a non-canonical
DeferredContext parameter value or a DeferredRoutine that resides within the
non-paged pool. (In PatchGuard 3, implementing the former check alone proves
sufficient, as for the ease of the implementation of PatchGuard 3, both the re-
purposed DPC routines and the non-SEH-based control path use compatible
calling conventions, which stipulate a non-canonical obfuscated pointer value as
the DeferredContext parameter.)

The main disadvantage of this approach involves inherent difficulties in perform-
ing arbitrary code patching in x64 (specifically, the large size of any code patch
and the large number of now relatively common instruction-pointer-relative in-
structions). However, given that this is a difficulty that impacts any code patch-
ing on x64, the author feels that it should not be considered a significant problem
for a determined attacker. In fact, Microsoft Research’s very own Detours im-
plements a code patching system for x64[5], illustrating that code patching on
x64 in general is not a task that should be considered insurmountable by any
means.

Because the timer and DPC dispatchers remain relatively unprotected targets
that have not been involved in public bypass source code that has been released
to date, the author would recommend bolstering the defenses of the timer and
DPC dispatcher for the next PatchGuard release, as the two routines continue
to represent an attractive single point of failure. Adding a third PatchGuard
execution mechanism that does not involve traditional DPCs at all would be
an example of one approach to eliminate the DPC dispatcher related logic as
a single point of failure. It may also be possible to increase the difficulty of
locating all the call sites within the DPC dispatching related code through a
combination of differing static call stack differences for each of the three call
sites of the timer DPC dispatcher (i.e. adding dummy function calls) combined
with call stack randomization on top of static call stack differences between
each of the three timer DPC dispatcher calll sites. Randomized call stacks
alone would not suffice as by examining the call stacks of many iterations of
timer DPC requests, it would become easy to eliminate the randomized entries

22

(which would not be common to all recorded call stacks) with a relatively high
degree of accuracy given a large sample size. A disadvantage to taking such an
approach is that it would essentially result in adding deliberately-difficult-to-
maintain ”spaghetti code” into yet another critical area of the operating system
(timer DPC dispatcher logic). The author suspects that the maintainer of the
timer DPC dispatcher code would likely not appreciate having to deal with such
things.

4.3 Canceling the PatchGuard Timer(s)

As PatchGuard continues to rely upon timer DPCs for the execution of its
check routines, the kernel timer DPC list itself continues to remain a relatively
attractive target for attack. The timer DPC list is common to all control paths
leading to PatchGuard, as timers are always used for the delayed execution
component that periodically calls the check routine.

There are presently two obstacles in the way of the timer DPC list. The first
of which is that altering it relies upon locating non-exported kernel variables.
Although it may be possible to do so via fingerprinting, this does make the
approach slightly less desirable than it might initially appear. However, finger-
printing can work if done carefully, and there are many short functions that
reference the timer list in a fairly predictable fashion (e.g. KeCancelTimer).
One other possible way to find the DPC list would be to create and set a timer
(thus inserting it into the timer list), and then scan every 8-byte-aligned value
in a non-paged uninitialized data section in ntoskrnl, treating each valid address
as a linked list and searching the first several entries for the timer that was just
linked into the list. While a rather ugly and bruteforce-based approach (and not
entirely safe either as one would need to be relying heavily on MmIsAddress-
Valid), scanning the ntoskrnl data sections is one alternative to fingerprinting
in terms of finding the timer list.

The secondary problem with this approach is that starting with PatchGuard
2, the timer list itself is obfuscated such that the link between a KTIMER
object and its corresponding KDPC is obfuscated. This obfuscation mechanism,
as previously describedbackref to 1, hinges upon two additional non-exported
kernel variables (KiWaitAlways, KiWaitNever) that act as obfuscation keys.
Locating these variables would be likely entail code analysis or fingerprinting of
(possibly exported) routines that need to insert a timer into the timer list, such
as KeSetTimerEx.

Another alternative approach that dispenses with fingerprinting and/or bruteforce-
based approaches altogether, at the expense of requriring added complexity (a
user mode component), would be to postpone the activation of any driver code
that would run afoul of PatchGuard until after Win32 in user mode has been
started. A user mode service could then be created that would download the

23

symbols for the kernel binary in use, retrieve the addresses of KiTimerTableList-
Head (the timer list), KiWaitNever and KiWaitAlways, and pass these addresses
on to the driver via any standard user mode to kernel mode communication
mechanism (such as DeviceIoControl). Because the kernel debugger relies on
the ability to retrieve these variables by name via the PDB symbols for the
!kdexts.timer extension, Microsoft would not be able to block this approach
by removing or renaming the obfuscation key variables without imparing the
functionality of existing debugger binaries.

Once one has located the KiTimerTableListHead, KiWaitAlways, and KiWait-
Never, it is a fairly simple (if perhaps unsafe without synchronization, though
one could always take the ”sledgehammer” approach and stop all but one CPU
and raise IRQL to HIGH LEVEL) to traverse the timer list, deobfuscate the DPC
link on each corresponding timer object, and from there check each timer to
see whether it bears the characteristics of being a PatchGuard timer (which
may include attributes like a timer interval several minutes into the future, a
non-canonical DeferredContext value, and possibly a DPC routine pointer into
non-paged pool). After one has located the timer in question, it can be easily
disabled (either removing it from the list entirely, such as via KeCancelTimer,
or by rewriting the DPC routine to point to an empty function that simply
returns without performing any operation.

Because Microsoft has functionality in the debugger that depends on the ability
to use these variables to access the timer list, they have unfortunately backed
themselves into something of a corner with respect to current operating sys-
tem versions, as it is generally Microsoft’s policy that existing debugger bina-
ries continue to function properly after hotfixes or service pack to a particular
already-released operating system version. The best ways to counteract this
approach would be to make it more difficult to pick out the PatchGuard DPC
in-memory with respect to all of the other timer DPC objects that are in the list
at any given time for a typical system, and to create additional launch vectors
for PatchGuard that do not depend so heavily on the timer list. There exist a
number of other ways to execute code without drawing the attention of someone
that does not know what they are looking, many of which are less obvious than
a timer.

4.4 Page-Table Swap

Like all memory accesses in the Windows kernel, PatchGuard’s system integrity
check routine operates in protected mode with paging enabled. It may theo-
retically be possible to take advantage of this fact to hide kernel patches from
PatchGuard.

The proposed bypass technique would involve patching the first instruction in
the timer and DPC dispatchers to branch to third party code. When a DPCs

24

and timer DPCs are about to be considered for execution, as signaled by a call
to one of the two dispatcher routines, a shadow copy of the page tables is cre-
ated. This shadow copy is configured to be identical to the normal page table
for the current process, except that the page table entries for any kernel code
pages that have been patched are altered to refer to physical pages that are rep-
resentative of the original state. The return address of the DPC or timer DPC
dispatcher on the stack is swapped with a pointer into driver-supplied code, and
cr3 is reconfigured to point to the shadow page table. Then, execution is trans-
ferred back to the timer or DPC dispatcher entrypoint (which no longer shows
any signs of patching due to the page table swap), and DPCs are dispatched.
When the dispatcher is finished with its work, which would include invoking
PatchGuard if PatchGuard is to be executed in any batched timer DPCs, then
control is returned to driver-supplied code, which then mirrors any page table
modifications since the shadow copy was made back to the actual page table for
the process, and cr3 is returned to its original value. Control is then transferred
to the normal return point of the dispatcher.

This approach does not involve disabling PatchGuard at all. Instead, it describes
a potential way to ”peacefully coexist” with it, so long as only kernel code
patches are being done. (Data pages, which could be expected to be modified
by a DPC, are considered by the author to be much less practical to protect
from PatchGuard in this fashion.) Because the DPC and timer DPC dispatcher
logic executes at IRQL DISPATCH LEVEL, thread context switching is disabled
for the current thread, making the cr3 swap approach relatively feasible.

Because this approach does not involve attacking PatchGuard directly, it auto-
matically circumvents all of the myriad defensive mechanisms built into Patch-
Guard in current releases, making it a fairly attractive potential avenue of at-
tack. However, there are some downsides. Among other things, the synchroniza-
tion required to pull a page tabpe swap off in a multiprocessor environment are
likely to be complex and difficult to safely duplicate if one allows DPC routines
to perform operations that alter PTEs. Additionally, there would be a perfor-
mance impact incurred by this approach as it would need to run continuously
in a relatively high-impact path (DPC dispatching) throughout system lifetime.
The performance implications of invalidating TLBs on every DPC batch may
be problematic in some circumstances (swapping cr3 automatically clears out
TLBs).

Another disadvantage of this approach is that by virtue of the fact that all DPCs
(and potentially all device hardware interrupts) may run with the shadow copy
of the page table, most hardware-related events will not be subject to kernel
code patches hidden by this mechanism. This may or may not be a problem
depending on what the goal of the desired kernel patching is.

Microsoft could counteract this approach by making a copy of all PTEs that
describe the kernel at PatchGuard initialization time and then validating all
kernel code PTEs from within the PatchGuard check routine. Additionally, if

25

Microsoft could make the assumption that PatchGuard always executes in the
system process, another approach could be to require that cr3 take on a known
value.

4.5 DPC Exception Handler Patching

One of the changes introduced in PatchGuard 3 over PatchGuard 2 was a slight
change to the protocol used to invoke the first stage of the decryption process.
Specifically, all callers of an encrypted PatchGuard context now include a static
8-byte string (of instruction opcodes) that is xor’d with a value at the start of
the PatchGuard context to form the initial decryption key.

The reasons for making this change over the original behavior are unclear to the
author, but it unfortunately represents an easy target for disabling PatchGuard,
as the string itself (0x8513148113148F0) is fairly unique and unlikely to appear
outside of PatchGuard in terms of kernel code. Furthermore, all PatchGuard
callers, including all ten of the repurposed DPC routine exception handlers and
the non-paged pool memory DPC adapter (if used) reference the string with
no obfuscation to speak of. This presents an extremely easy, fingerprint-based
approach to disabling PatchGuard. By scanning non-paged pool space for this
string, as well as kernel code regions, it is trivially easy to locate an instruction in
the middle of the every single code path responsible for invoking PatchGuard’s
check context.

After the instructions referencing the 8-byte string have been located, it is trivial
to patch them to execute an unwind out of the exception handler logic (or in the
case of the non-paged pool memory code, simply return directly). Such an attack
prevents PatchGuard from ever starting, and furthermore has the advantage of
a minimum of additional supporting logic required (when compared to many of
the other bypass techniques outlined in this article).

It would be trivial for Microsoft to disable this technique. The recommenda-
tion of the author would be to get rid of the static 8-byte string referenced
in every PatchGuard caller. Ironically, PatchGuard 2 necessarily has a simi-
lar 4-byte string (which is also still used in PatchGuard 3), representing the
initial instruction of the first stage decryption stub. Unlike with PatchGuard
3, however, PatchGuard 2 takes care to obfuscate the process of writing the
opcode string out to the PatchGuard context, so that one cannot simply use a
single blanket fingerprint to cover all cases. The change made in PatchGuard 3
completely blows this work out of the water, so to speak, and it has the added
advantage of being twice as large as a value to fingerprint as well.

26

4.6 System Call MSR Swap

A variation on the technique described in backref:4, it should theoretically be
possible to swap the system call MSRs (or in fact several other processor con-
trol registers that are protected by PatchGuard) for the duration of DPC or
timer DPC dispatching online, with the ”tainted” values being restored after
the dispatcher returns. The system call MSRs are responsible for designating
the address of the system call dispatcher, and are thus an attractive target for
third parties that would like to perform system call hooking.

The same basic concepts would be applied to this technique as previously de-
scribed in the cr3 swap technique. If system calls are the only desired targets
to hook, then the cr3 swap can be eliminated as unnecessary for single pro-
cessor systems (as it would be safe to make and restore changes to the actual
underlying physical pages before and after a DPC dispatcher call, using the
return address on the stack as a way to return to the altered location without
leaving opcodes patched in the kernel across dispatcher invocations). For multi-
processor systems, some mechanism would need to be developed to allow the
MSR swap to be made across DPC dispatchers while preventing code patches
from becoming visible to a second processor. This is necessary because there
could be more than one PatchGuard context executing simultaneously with the
PatchGuard 3 addition of a probability to initialize a second check context at
system boot time.

In order to block such a technique, Microsoft would likely be best served by mak-
ing it difficult to locate all the regions necessary to patch in order to maintain
the deception of an unpatched system across PatchGuard checks. The principal
way to do this would be to create other, alternative launch vectors for Patch-
Guard that are unrelated to DPCs and, preferably, do not involve exported
APIs that are easy to intercept from a third party perspective.

27

Chapter 5

Conclusion

Although PatchGuard 3 does bring some pointed counter-attacks to many pre-
viously disclosed bypass techniques, version 3, like its predecessors, is hardly
immune to being either disabled completely or simply co-existed with. It is
likely that future revisions to PatchGuard will continue to be vulnerable to a
variety of bypass techniques, though it is certain within Microsoft’s reach to
counter many of the publicly disclosed bypass vectors. It is anticipated by the
author that until PatchGuard can be implemented with hardware support, such
as via a combination of trusted boot (TPM) and a permanent hypervisor, future
revisions will continue to be vulnerable to attack from determined individuals.

On the other hand, Microsoft’s efforts with PatchGuard appear to have paid
off so far in terms of preventing a mass-uptake of PatchGuard-violating drivers
on Windows x64. In other words, a case could be made that Microsoft doesn’t
need to be perfect with PatchGuard, only ”good enough” to give vendors cold
feet about trying to ship products that bypass it. Only time will tell if this
continues to remain the case into the future, however.

28

Bibliography

[1] Skywing. Subverting PatchGuard version 2. http://www.uninformed.
org/?v=6&a=1&t=sumry; accessed September 16, 2007

[2] Skywing. Programming against the x64 exception handling support, part 7:
Putting it all together, or building a stack walking routine. http://www.
nynaeve.net/?p=113; accessed September 16, 2007

[3] skape. Improved Automated Analysis of Windows x64 Binaries. http://
uninformed.org/index.cgi?v=4&a=1&t=sumry; accessed September 16,
2007

[4] skape, Skywing. Bypassing PatchGuard on Windows x64. http://
uninformed.org/index.cgi?v=3&a=3&t=sumry; accessed September 16,
2007

[5] Microsoft. Detours. http://research.microsoft.com/sn/detours/; ac-
cessed September 16, 2007

29

http://www.uninformed.org/?v=6&a=1&t=sumry
http://www.uninformed.org/?v=6&a=1&t=sumry
http://www.nynaeve.net/?p=113
http://www.nynaeve.net/?p=113
http://uninformed.org/index.cgi?v=4&a=1&t=sumry
http://uninformed.org/index.cgi?v=4&a=1&t=sumry
http://uninformed.org/index.cgi?v=3&a=3&t=sumry
http://uninformed.org/index.cgi?v=3&a=3&t=sumry
http://research.microsoft.com/sn/detours/

	Introduction
	Protection Improvements
	Multiple Concurrent PatchGuard Check Contexts
	Filtering of Exception Codes Used to Trigger PatchGuard Execution
	Executing PatchGuard Without SEH
	Randomized Call Frames in Repurposed DPC Routine Exception Paths
	Expanded Set of Protected Regions

	Additional Protection Mechanisms
	Timer List Obfuscation
	Anti-Debugging Code at PatchGuard Initialization Time
	KeBugCheckEx Protection
	Two-Stage Code Deobfuscation
	Code Patching Support

	Bypass Mechanisms and Countermeasures
	Hybrid Exception Interception and Memory Searching
	Timer DPC Dispatcher and DPC Dispatching
	Canceling the PatchGuard Timer(s)
	Page-Table Swap
	DPC Exception Handler Patching
	System Call MSR Swap

	Conclusion

