
GREPEXEC: Grepping Executive
Objects from Pool Memory

May 30, 2006

bugcheck
chris@bugcheck.org

Contents

1 Foreword 2

2 Introduction 3

3 Scanning Memory 4
3.1 Retrieving Pool Ranges . 4
3.2 Locking Memory . 5

4 Detecting Executive Objects 7
4.1 Generic Object Information . 7
4.2 Validating Pool Block Information 8
4.3 Object Specific Signatures . 10

4.3.1 Process Objects . 10
4.3.2 Thread Objects . 11
4.3.3 Driver Objects . 12
4.3.4 Device Objects . 12
4.3.5 Miscellaneous . 12

5 Found An Object, Now What? 14
5.1 Process Objects . 15
5.2 Thread Objects . 15
5.3 Driver Objects . 15
5.4 Device Objects . 16

6 Breaking Signatures 17
6.1 Pointer Based Signatures . 17
6.2 N-Depth Pointer Validation . 18
6.3 Miscellaneous . 19

7 GrepExec: The Tool 21
7.1 The Signature . 21
7.2 Usage . 22
7.3 Sample Output . 23

8 Conclusion 25

1

Chapter 1

Foreword

Abstract:

As rootkits continue to evolve and become more advanced, methods that can
be used to detect hidden objects must also evolve. For example, relying on
system provided APIs to enumerate maintained lists is no longer enough to
provide effective cross-view detection. To that point, scanning virtual memory
for object signatures has been shown to provide useful, but limited, results.
The following paper outlines the theory and practice behind scanning memory
for hidden objects. This method relies upon the ability to safely reference the
windows system virtual address space and also depends upon the building and
locating effective memory signatures. Using this method as a base, suggestions
are made as to what actions might be performed once objects are detected. The
paper also provides a simple example of how object-independent signatures can
be built and used to detect several different kernel objects on all versions of
Windows NT+. Due to time constraints, the source code associated with this
paper will be made publicly available in the near future.

Thanks:

Thanks to skape, Peter, and the rest of the uninformed hooligans; you guys and
gals rock!

Disclaimer:

The author is not responsible for how the papers contents are used or inter-
preted. Some information may be inaccurate or incorrect. If the reader feels
any information is incorrect or has not been properly credited please contact
the author so corrections can be made. All content refers to the Windows XP
Service Pack 2 platform unless otherwise noted.

2

Chapter 2

Introduction

As rootkits become increasingly popular and more sophisticated than ever be-
fore, detection methods must also evolve. While rootkit technologies have
evolved beyond API hooking methods, detectors have also evolved beyond the
hook detection ages. At first rootkits such as FU[5] were detected using various
methods which exploited its weak and proof-of-concept design by applications
such as Blacklight[2]. These specific weaknesses were addressed in FUTo[7].
However, some still remain excluding the topic of this paper.

RAIDE[1], a rootkit detection tool, uses a memory signature scanning method in
order to find EPROCESS blocks hidden by FUTo. This specific implementation
works, however, it too has its weaknesses. This paper attempts to outline the
general concepts of implementing a successful rootkit detection method using
memory signatures.

The following chapters will discuss how to safely enumerate system memory,
what to look for when building a memory signature, what to do once a memory
signature has been found, and potential methods of breaking memory signatures.
Finally, an accompanying tool will be used to concretely illustrate the subject
of this paper.

After reading the following paper, the reader should have an understanding of
the concepts and issues related to kernel object detection using memory signa-
tures. The author believes this to be an acceptable method of rootkit detection.
However, as with most things in the security realm, no one technique is the
ultimate solution and this technique should only be considered complimentary
to other known detection methods.

3

Chapter 3

Scanning Memory

Enumerating arbitrary system memory is nowhere near a science since its state
can change at anytime while you are attempting to access it. While this is true,
the memory that surrounds kernel executive objects should be fairly consistent.
With proper care, memory accesses should be safe and the chance of false posi-
tives and negatives should be fairly minimal. The following sections will outline
a safe method to enumerate the contents of both the system’s PagedPool and
NonPagedPool.

3.1 Retrieving Pool Ranges

For the purpose of enumerating pool memory it is unnecessary to enumerate
the entire system address space. The system maintains a few global variables
such as nt!MmPagedPoolStart, nt!MmPagedPoolEnd and related NonPagedPool
variables that can be used in order to speed up a search and reduce the possibility
of unnecessary false positives. Although these global variables are not exported,
there are a couple ways in that they can be obtained.

The most reliable method on modern systems (Windows XP Service Pack 2
and up) is through the use of the KPCR->KdVersionBlock pointer located at
fs:[0x34]. This points to a KDDEBUGGER DATA64 structure which is defined
in the Debugging Tools For Windows[8] SDK header file wdbgexts.h. This
structure is commonly used by malicious software in order to gain access to
non-exported global variables to manipulate the system.

A second method to obtain PagedPool values is to reference the per-session
nt! MM SESSION SPACE found at EPROCESS->Session. This contains informa-
tion about the session owning the process, including its ranges and many other
PagedPool related values shown here.

4

kd> dt nt!_MM_SESSION_SPACE
+0x01c NonPagedPoolBytes : Uint4B
+0x020 PagedPoolBytes : Uint4B
+0x024 NonPagedPoolAllocations : Uint4B
+0x028 PagedPoolAllocations : Uint4B
+0x044 PagedPoolMutex : _FAST_MUTEX
+0x064 PagedPoolStart : Ptr32 Void
+0x068 PagedPoolEnd : Ptr32 Void
+0x06c PagedPoolBasePde : Ptr32 _MMPTE
+0x070 PagedPoolInfo : _MM_PAGED_POOL_INFO
+0x244 PagedPool : _POOL_DESCRIPTOR

While enumerating the entire system address space is not preferable, it can
still be used in situations where pool information cannot be obtained. The
start of the system address space can be assumed to be any address above
nt!MmHighestUserAddress. However, it would appear that an even safer as-
sumption would be the address following the LARGE PAGE where ntoskrnl.exe
and hal.dll are mapped. This can be obtained by using any address exported
by hal.dll and rounding up to the nearest large page.

3.2 Locking Memory

When accessing arbitrary memory locations, it is important that pages be locked
in memory prior to accessing them. This is done to ensure that accessing the
page can be done safely and will not cause an exception due to a race condition,
such as if it were to be de-allocated between a check and a reference. The system
provides a routine to lock pages named nt!MmProbeAndLockPages. This routine
can be used to lock either pagable or non-paged memory. Since physical pages
maintain a reference count in the nt!MmPfnDatabase there is no worry of an
outside source unlocking the pages and having them page out to disk or become
invalid.

In order to use MmProbeAndLockPages, a caller must first build an MDL struc-
ture using something such as nt!IoAllocateMdl or nt!MmInitializeMdl. The
MDL creation routines are passed a virtual address and length describing the
block of virtual memory to be referenced. On a successful call to nt!MmProbeAndLockPages,
the virtual address range described by the MDL structure is safe to access. Once
the block is no longer needed to be accessed, the pages must be unlocked using
nt!MmUnlockPages.

A trick can be used to further reduce the number of pages locked when enumer-
ating the NonPagedPool. As documented, MmProbeAndLockPages can be called
at DISPATCH LEVEL with the limitation of it only being allowed to lock resi-
dent memory pages and failing otherwise, which is a desirable side-effect in this

5

case.

6

Chapter 4

Detecting Executive
Objects

In general, all of the executive components of the NT kernel rely on the object
manager in order to manage the objects they allocate. All objects allocated by
the object manager have a common header named OBJECT HEADER and addi-
tional optional headers such as OBJECT HEADER NAME INFO, process quota infor-
mation, and handle trace information. Let’s take a look to see what is common
to all executive objects and how we can use the pool block header information
to identify an allocated executive object. Lastly, some object specific informa-
tion will be discussed in terms of generating a useful memory signature for an
object.

4.1 Generic Object Information

Since the OBJECT HEADER is common to all objects, let’s look at it in detail. A
static field here refers to all objects of specific type, not all executive objects in
the system.

0: kd> dt _OBJECT_HEADER
+0x000 PointerCount : Int4B
+0x004 HandleCount : Int4B
+0x004 NextToFree : Ptr32 Void
+0x008 Type : Ptr32 _OBJECT_TYPE
+0x00c NameInfoOffset : UChar
+0x00d HandleInfoOffset : UChar
+0x00e QuotaInfoOffset : UChar

7

+0x00f Flags : UChar
+0x010 ObjectCreateInfo : Ptr32 _OBJECT_CREATE_INFORMATION
+0x010 QuotaBlockCharged : Ptr32 Void
+0x014 SecurityDescriptor : Ptr32 Void
+0x018 Body : _QUAD

PointerCount Variable # of references
HandleCount Variable # of open handles
NextToFree NotValid Used when freed
Type Static Pointer to OBJECT TYPE
NameInfoOffset Static 0 or offset to related header
HandleInfoOffset Static 0 or offset to related header
QuotaInfoOffset Static 0 or offset to related header
Flags NotCertain Not certain
ObjectCreateInfo Variable Pointer to OBJECT CREATE INFORMATION
QuotaBlockCharged NotCertain Not certain
SecurityDescriptor Variable Pointer to SECURITY DESCRIPTOR
Body NotValid Union with the actual object

From this it is assumed that the most reliable and unique signature is the Type
field of the OBJECT HEADER which could be used in order to identify objects of a
specific type such as EPROCESS, ETHREAD, DRIVER OBJECT, and DEVICE OBJECT
objects.

4.2 Validating Pool Block Information

Kernel pool management appears to be slightly different from usermode heap
management. However, if one assumes that the only concern is dealing with pool
memory allocations which are less than PAGE SIZE, it is fairly similar. Each call
to ExAllocatePoolWithTag() returns a pre-buffer header as follows:

0: kd> dt _POOL_HEADER
+0x000 PreviousSize : Pos 0, 9 Bits
+0x000 PoolIndex : Pos 9, 7 Bits
+0x002 BlockSize : Pos 0, 9 Bits
+0x002 PoolType : Pos 9, 7 Bits
+0x000 Ulong1 : Uint4B
+0x004 ProcessBilled : Ptr32 _EPROCESS
+0x004 PoolTag : Uint4B
+0x004 AllocatorBackTraceIndex : Uint2B
+0x006 PoolTagHash : Uint2B

8

For the purposes of locating objects, the following is a breakdown of what
could be useful. Again, static refers to fields common between similar executive
objects and not all allocated POOL HEADER structures.

PreviousSize Variable Offset to previous pool block
PoolIndex NotCertain Not certain
BlockSize Static Size of pool block
PoolType Static POOL TYPE
Ulong1 Union Padding, not valid
ProcessBilled Variable Allocator EPROCESS when no Tag specified
PoolTag Static Pool Tag (ULONG)
AllocatorBackTraceIndex NotCertain Not certain
PoolTagHash NotCertain Not certain

The POOL HEADER contains several fields that appear to be common to similar
objects which could be used to further verify the likelihood of locating an object
of a specific type such as BlockSize, PoolType, and PoolTag.

In addition to the mentioned static fields, two other fields, PreviousSize and
BlockSize, can be used to validate that the currently assumed POOL HEADER
appears to be a valid, allocated pool block and is in one of the pool managers
maintained link lists. PreviousSize and BlockSize are multiples of the mini-
mum pool alignment which is 8 bytes on a 32bit system and 16 bytes on a 64bit
system. These two elements supply byte offsets to the neighboring pool blocks.

If PreviousSize equals 0, the current POOL HEADER should be the first pool
block in the pool’s contiguous allocations. If it is not, it should be the same
as the previous POOL HEADERs BlockSize. The BlockSize should never equal 0
and should always be the same as the proceeding POOL HEADERs PreviousSize.

The following code validates a POOL HEADER of an allocated pool block.

//
// Assumes BlockOffset < PAGE_SIZE
// ASSERTS Flink == Flink->Blink && Blink == Blink->Flink
//
BOOLEAN ValidatePoolBlock (

IN PPOOL_HEADER pPoolHdr,
IN VALIDATE_ADDR pValidator

) {
BOOLEAN bReturn = FALSE;

PPOOL_HEADER pPrev;
PPOOL_HEADER pNext;

9

pPrev = (PPOOL_HEADER)((PUCHAR)pPoolHdr
- (pPoolHdr->PreviousSize * sizeof(POOL_HEADER)));

pNext = (PPOOL_HEADER)((PUCHAR)pPoolHdr
+ (pPoolHdr->BlockSize * sizeof(POOL_HEADER)));

if
((
(pPoolHdr == pNext)

||(pValidator(pNext + sizeof(POOL_HEADER) - 1)
&& pPoolHdr->BlockSize == pNext->PreviousSize)
)
&&
(
(pPoolHdr != pPrev)

||(pValidator(pPrev)
&& pPoolHdr->PreviousSize == pPrev->BlockSize)
))
{

bReturn = TRUE;
}

return bReturn;
}

4.3 Object Specific Signatures

So far a few useful signatures have been shown which apply to all executive
objects and could be used to identify them in memory. For some cases these
may be enough to be effective. However, in other cases, it may be necessary to
examine information within the object’s body itself in order to identify them.
It should be noted that some objects of interest may be clearly defined and
documented while others may not be. Furthermore, executive object definitions
may vary between OS versions. The following subsections briefly outline obvi-
ous memory signatures for a few objects which generally are of interest when
identifying rootkit-like behavior. A few examples of object-specific signatures
will also be discussed, some of which have been used in previous work.

4.3.1 Process Objects

Here are just a few of the most basic EPROCESS fields which can form a sim-
ple signature using rather predictable constant values which hold true for all
EPROCESS structures in the same system.

10

Pcb.Header.Type Dispatch header type number
Pcb.Header.Size Size of dispatcher object
Pcb.Affinity CPU affinity bit mask, typically # CPU in system
Pcb.BasePriority Typically the default of 8
Pcb.ThreadQuantum Workstations is typically 18
ExitTime 0 for running processes
UniqueProcessId 0 if bitwise AND with 0xFFFF0002
SectionBaseAddress Typically 0x00400000 for non-system executables
InheritedFromUniqueProcessId Same as UniqueProcessId, typically a valid running pid
Session Unique on a per-session basis
ImageFileName Printable ASCII, typically ending in ’.exe’
Peb 0x7FF00000 if bitwise AND with 0xFFF00FFF
SubSystemVersion XP Service Pack 2 is 0x400

Note that there are several other DISPATCH HEADERs embedded within locks,
events, timers, etc in the structure which also have a predicable Header.Type
and Header.Size.

4.3.2 Thread Objects

Here are just a few of the most basic ETHREAD fields which can form a simple sig-
nature using rather predictable constant values which hold true for all ETHREAD
structures in the same system.

Tcb.Header.Type Dispatch header type number
Tcb.Header.Size Size of dispatcher object
Teb 0x7FF00000 if bitwise AND with 0xFFF00FFF
BasePriority Typically the default of 8
ServiceTable nt!KeServiceDescriptorTable(Shadow) used by RAIDE
Affinity CPU affinity bit mask, typically # CPU in system
PreviousMode 0 or 1, which is KernelMode or UserMode
Cid.UniqueProcess 0 if bitwise AND with 0xFFFF0002
Cid.UniqueThread 0 if bitwise AND with 0xFFFF0002

Note that there are several other DISPATCH HEADERs embedded within locks,
events, timers, etc in the structure which also have a predicable Header.Type
and Header.Size.

11

4.3.3 Driver Objects

A tool written previously named MODGREPPER[3] by Joanna Rutkowska of
invisiblethings.org used a signature based approach to detect hidden DRIVER OBJECTs.
This signature was later ’broken’ by valerino described in a rootkit.com article
titled ”Please don’t greap me!”[6]. Listed here are a few fields which a signature
could be built upon to detect DRIVER OBJECTs.

Type I/O Subsystem structure type ID, should be 4
Size Size of the structure, should be 0x168
DeviceObject Pointer to a valid first created device object(can be NULL)
DriverSection Pointer to a nt! LDR DATA TABLE ENTRY structure
DriverName A UNICODE STRING structure containing the driver name

The following fields of the DRIVER OBJECT can be validated by assuring they fall
within the range of a loaded driver image such that:

DriverStart < FIELD < DriverStart + DriverSize.

DriverInit Address of DriverEntry() function
DriverUnload Address of DriverUnload() function, can be NULL
MajorFunction[0x1c] Dispatch handlers for IRP MJ XXX, can default to ntoskrnl.exe

4.3.4 Device Objects

For the DEVICE OBJECT structure there are few static signatures which are us-
able. Here are the only obvious ones.

Type I/O Subsystem structure type ID, should be 3
Size Size of the structure, should be 0xb8
DriverObject Pointer to a valid driver object

Note that the DriverObject field must be valid in order for the device to func-
tion.

4.3.5 Miscellaneous

So far the memory signatures discussed have been fairly straight forward and
for the most part are simply a binary comparison with a specific value. Later in

12

this paper (6.2), a technique called N-depth pointer validation will be discussed
as a method of developing a more effective signature in situations where pointer
based memory signatures are attempted to be evaded.

Another way of considering an object field as a signature is to validate it in terms
of its characteristics instead of by its value. A common example of this would
be to validate an object field LIST ENTRY. Validating a LIST ENTRY structure
can be done as follows:

Entry == Entry->Flink->Blink == Entry->Blink->Flink.

A pointer to any object or memory allocation can also be checked using the func-
tion shown previously, named ValidatePoolBlock. Even a UNICODE STRING.Buffer
can be validated this way provided the allocation is less then PAGE SIZE.

13

Chapter 5

Found An Object, Now
What?

The question of what to do after potentially identifying an executive object
through a signature depends on what the underlying goal is. For the purpose of
a the sample utility included with this paper, the goal may be to simply display
some information about the objects as it finds them.

In the context of a rootkit detector, however, there may be many more steps
that need to be taken. For example, consider a detector looking for EPROCESS
blocks which have been unlinked from the process linked list or a driver module
hidden from the system service API. In order to determine this, some cross-view
comparisons of the raw objects detected and the output from an API call or
a list enumeration is needed. Detectors must also take into consideration the
race condition of an object being created or destroyed in between the memory
enumeration and the acquisition of the ”known to the system” data.

Additionally, it may be desired that some additional sanity checks be performed
on these objects in addition to the signature. Do the object fields x,y,z contain
valid pointers? Is field c equal to b? Does this object appear to be valid how-
ever has signs of tampering in order to hide it? Does the number of detected
objects match up with a global count value such as the one maintained in an
OBJECT TYPE structure? The following sections will briefly mention some ran-
dom thoughts of what to do with a suspected object of the four types previously
mentioned in this paper in Chapter 4.

14

5.1 Process Objects

Here is a brief list of things to check when scanning for EPROCESS objects.

• Compare against a high level API such as kernel32!CreateToolhelp32Snapshot.

• Compare against a system call such as nt!NtQuerySystemInformation.

• Compare against the EPROCESS->ActiveProcessLinks list.

• Does the process have a valid list of threads?

• Can PsLookupProcessByProcessId open its UniqueProcessId?

• Is ImageFileName a valid string? zeroed? garbage?

5.2 Thread Objects

Here is a brief list of things to check when scanning for ETHREAD objects.

• Compare against a high level API such as kernel32!CreateToolhelp32Snapshot.

• Compare against a system call such as nt!NtQuerySystemInformation.

• Does the process have a valid owning process?

• Can PsLookupThreadByThreadId open its Cid.UniqueThread?

• What does Win32StartAddress point to? Is it a valid module address?

• What is its ServiceTable value?

• If it is in a wait state, for how long?

• Where is its stack? What does its stack trace look like?

5.3 Driver Objects

Here is a brief list of things to check when scanning for DRIVER OBJECT objects.

• Compare against services found in the service control manager database.

• Compare against a system call such as nt!NtQuerySystemInformation.

• Is the object in the global system namespace?

15

• Does the driver own any valid device objects?

• Does the drive base address point to a valid MZ header?

• Do the object’s function pointer fields look correct?

• Does DriverSection point to a valid nt! LDR DATA TABLE ENTRY?

• Does DriverName or the LDR DATA TABLE ENTRY have valid strings? ze-
roed? garbage?

5.4 Device Objects

Here is a brief list of things to check when scanning for DEVICE OBJECT objects.

• Is the owning driver object valid?

• Is the device named and is it mapped into the global namespace?

• Does it appear to be in a valid device stack?

• Are its Type and Size fields correct?

16

Chapter 6

Breaking Signatures

Memory signatures can be an effective method of identifying allocated objects
and can serve as a low level baseline in order to detect objects hidden by several
different methods. Although the memory signature detection method may be
effective, it doesn’t come without its own set of problems. Many signatures
can be evaded using several different techniques and non-evadable signatures
for objects, if any exist, have yet to be explored. The following sections discuss
issues and counter measures related to defeating memory signatures.

6.1 Pointer Based Signatures

Using a memory signature which is a valid pointer to some common object or
static data is a very appealing signature to use for detection due to its reliability,
however is also an easy signature to bypass. The following demonstrates the
most simplistic method of bypassing the OBJECT HEADER->Type signature this
paper uses as a generic object memory signature. This is possible because the
OBJECT TYPE is just an allocated structure of fairly stable data. Many pointer
based signatures with similar static characteristics are open to the same attack.

NTSTATUS KillObjectTypeSignature (
IN PVOID Object

)
{

NTSTATUS ntStatus = STATUS_SUCESS;
PVOID pDummyObject;
POBJECT_HEADER pHdr;

17

pHdr = OBJECT_TO_OBJECT_HEADER(Object);

pDummyObject = ExAllocatePool(sizeof(OBJECT_TYPE));

RtlCopyMemory(pDummyObject, pHdr->Type, sizeof(OBJECT_TYPE));

pHdr->Type = pDummyObject;

return STATUS_SUCCESS;
}

6.2 N-Depth Pointer Validation

As demonstrated in the previous section, pointer based signatures are effec-
tive. However, in some cases, they may be trivial to bypass. The following
code demonstrates an example which does what this paper refers to as N-depth
pointer validation in an attempt to create a more complex, and potentially
more difficult to bypass, signature using pointers. The following example is also
evadable using the same principal of relocation shown above.

The algorithm assumes a given address is an executive object and attempts
validation by performing the following steps:

1. Calculates an assumed OBJECT HEADER

2. Assumes pObjectHeader->Type is an OBJECT TYPE

3. Calculates an assumed OBJECT HEADER for the OBJECT TYPE

4. Assumes pObjectHeader->Type is nt!ObpTypeObjectType

5. Validates pTypeObject->TypeInfo.DeleteProcedure == nt!ObpDeleteObjectType

BOOLEAN ValidateNDepthPtrSignature (
IN PVOID Address,
IN VALIDATE_ADDR pValidate

)
{

PVOID pObject;
POBJECT_TYPE pTypeObject;
POBJECT_HEADER pHdr;

pHdr = OBJECT_TO_OBJECT_HEADER(Address);

18

if(! pValidate(pHdr) || ! pValidate(&pHdr->Type)) return FALSE;

// Assume this is the OBJECT_TYPE for this assumed object
pTypeObject = pHdr->Type;

// OBJECT_TYPE’s have headers too
pHdr = OBJECT_TO_OBJECT_HEADER(pTypeObject);

if(! pValidate(pHdr) || ! pValidate(&pHdr->Type)) return FALSE;

// OBJECT_TYPE’s have an OBJECT_TYPE of nt!ObpTypeObjectType
pTypeObject = pHdr->Type;

if(! pValidate(&pTypeObject->TypeInfo.DeleteProcedure)) return FALSE;

// \ObjectTypes\Type has a DeleteProcedure of nt!ObpDeleteObjectType
if(pTypeObject->TypeInfo.DeleteProcedure

!= nt!ObpDeleteObjectType) return FALSE;

return TRUE;
}

6.3 Miscellaneous

An obvious method of preventing detection from memory scanning would be to
use what is commonly referred to as the Shadow Walker[4] memory subversion
technique. If virtual memory is unable to be read then of course a memory scan
will skip over this area of memory. In the context of pool memory, however,
this may not be an easy attack since it may create a situation where the pool
appears corrupted which could lead to crashes or system bugchecks. Of course,
attacking a function like nt!MmProbeAndLockPages or IoAllocateMdl globally
or specifically in the import address table of the detector itself would work.

For memory signatures based on constant or predicable values it may be feasi-
ble to either zero out or change these fields and not disturb system operation.
For example take the author’s enhancements to the FUTo rootkit where it is
seen that the EPROCESS->UniqueProcessId can be safely cleared to 0 or pre-
viously mentioned rootkit.com article titled ”Please don’t greap me!” which
clears DRIVER OBJECT->DriverName and its associated buffer in order to defeat
MODGREPPER.

For the case of some pointer signatures a simple binary comparison may not be
enough to validate it. Take the above example and using nt!ObpDeleteObjectType.
This could be defeated by overwriting pTypeObject->TypeInfo.DeleteProcedure

19

to point to a simple jump trampoline which is allocated elsewhere which simple
jumps back to nt!ObpDeleteObjectType.

20

Chapter 7

GrepExec: The Tool

Included with this paper is a proof-of-concept tool complete with source which
demonstrates scanning the pool for signatures to detect executable objects. Ob-
jects detected are DRIVER OBJECT, DEVICE OBJECT, EPROCESS, and ETHREAD. The
tool does nothing to determine if an object has been attempted to be hidden
in any way. Instead, it simply displays found objects to standard output. At
this time the author has no plans to continue work with this specific tool, how-
ever, there are plans to integrate the memory scanning technique into another
project. The source code for the tool can be easily modified to detect other
signatures and/or other objects.

7.1 The Signature

For demonstration purposes the signature used is simple. All objects are allo-
cated in NonPagedPool so only non-paged memory is enumerated for the search.
The signature is detected as follows:

1. Enumeration is performed by assuming the start of a pool block.

2. The signature offset is added to this pointer.

3. The assumed signature is compared with the OBJECT HEADER->Type for
the object type being searched for.

4. The assumed POOL HEADER->PoolType is compared to the objects known
pool type.

5. The assumed POOL HEADER is validated using the function from section
4.2, ValidatePoolBlock.

21

The following is the function which sets up the parameters in order to perform
the pool enumeration and validation of a block by a single PVOID signature.
On a match, a callback is made using the pointer to the start of the matching
block. As an alternative to the PVOID signature, the poolgrep.c code can
easily be modified to accept either a structure to several signatures and offsets
or a validation function pointer in order to perform a more complex signature
validation.

NTSTATUS ScanPoolForExecutiveObjectByType (
IN PVOID Object,
IN FOUND_BLOCK_CB Callback,
IN PVOID CallbackContext

) {
NTSTATUS ntStatus = STATUS_SUCCESS;
POBJECT_HEADER pObjHdr;
PPOOL_HEADER pPoolHdr;
ULONG_PTR blockSigOffset;
ULONG_PTR blockSignature;

pObjHdr = OBJECT_TO_OBJECT_HEADER(Object);
pPoolHdr = OBJHDR_TO_POOL_HEADER(pObjHdr);
blockSigOffset = (ULONG_PTR)&pObjHdr->Type - (ULONG_PTR)pObjHdr

+ OBJHDR_TO_POOL_BLOCK_OFFSET(pObjHdr);
blockSignature = (ULONG_PTR)pObjHdr->Type;

(VOID)ScanPoolForBlockBySignature(pPoolHdr->PoolType - 1,
0, // pPoolHdr->PoolTag OPTIONAL,
blockSigOffset,
blockSignature,
Callback,
CallbackContext);

return ntStatus;
}

7.2 Usage

GrepExec usage is pretty straightforward. Here is the output of the help com-
mand.

**

22

GREPEXEC 0.1 * Grepping executive objects from the pool *
Author: bugcheck
Built on: May 30 2006

**

Usage: grepexec.exe [options]

--help, -h Displays this information
--install, -i Manually install driver
--uninstall, -u Manually uninstall driver
--status, -s Display installation status
--process, -p GREP process objects
--thread, -t GREP thread objects
--driver, -d GREP driver objects
--device, -e GREP device objects

7.3 Sample Output

The standard output is also straightforward. Here is a sample of each supported
command.

C:\grepexec>grepexec.exe -p
EPROCESS=81736C88 CID=0354 NAME: svchost.exe
EPROCESS=8174E238 CID=0634 NAME: explorer.exe
EPROCESS=81792020 CID=027c NAME: winlogon.exe
...

C:\grepexec>grepexec.exe -t
EPROCESS=817993C0 ETHREAD=815D4A58 CID=0778.077c wscntfy.exe
EPROCESS=8174AA88 ETHREAD=815D6860 CID=0408.0678 svchost.exe
EPROCESS=819CA830 ETHREAD=815F3B30 CID=0004.0368 System
EPROCESS=81792020 ETHREAD=81600398 CID=027c.0460 winlogon.exe
...

C:\grepexec>grepexec.exe -d
DRIVER=81722DA0 BASE=F9B5C000 \FileSystem\NetBIOS
DRIVER=819A4B50 BASE=F983D000 \Driver\Ftdisk
DRIVER=81725DA0 BASE=00000000 \Driver\Win32k
DRIVER=81771880 BASE=F9EB4000 \Driver\Beep
...

C:\grepexec>grepexec.exe -e

23

DEVICE=81733860 \Driver\IpNat NAME: IPNAT
DEVICE=81738958 \Driver\Tcpip NAME: Udp
DEVICE=817394B8 \Driver\Tcpip NAME: RawIp
DEVICE=81637CE0 \FileSystem\Srv NAME: LanmanServer
...

24

Chapter 8

Conclusion

From reading this paper the reader should have a good understanding of the
concepts and issues related to scanning memory for signatures in order to de-
tect objects in the system pool. The reader should be able to enumerate system
memory safely, construct their own customized memory signatures, locate sig-
natures in memory, and implement their own reporting mechanism.

It is obvious that object detection using memory scanning is no exact science.
However, it does provide a method which, for the most part, interacts with the
system as little as possible. The author believes that the outlined technique can
be successfully implemented to obtain acceptable results in detecting objects
hidden by rootkits.

25

Bibliography

[1] Blackhat.com. RAIDE: Rootkit Analysis Identification Elimination.
http://www.blackhat.com/presentations/bh-europe-06/
bh-eu-06-Silberman-Butler.pdf;
Accessed May. 30, 2006.

[2] F-Secure. Blacklight.
http://www.f-secure.com/blacklight/;
Accessed May. 30, 2006.

[3] Invisiblethings.org. MODGREPPER.
http://www.invisiblethings.org/tools.html;
Accessed May. 30, 2006.

[4] Phrack.org. Shadow Walker.
http://www.phrack.org/phrack/63/p63-0x08_Raising_The_Bar_For_
Windows_Rootkit_Detection.txt;
Accessed May. 30, 2006.

[5] Rootkit.com. FU.
http://rootkit.com/project.php?id=12;
Accessed May. 30, 2006.

[6] Rootkit.com. Please don’t greap me!.
http://rootkit.com/newsread.php?newsid=316;
Accessed May. 30, 2006.

[7] Uninformed.org. futo.
http://uninformed.org/?v=3&a=7&t=sumry;
Accessed May. 30, 2006.

[8] Windows Hardware Developer Central. Debugging Tools for Windows.
http://www.microsoft.com/whdc/devtools/debugging/default.mspx;
Accessed May. 30, 2006.

26

http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Silberman-Butler.pdf
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Silberman-Butler.pdf
http://www.f-secure.com/blacklight/
http://www.invisiblethings.org/tools.html
http://www.phrack.org/phrack/63/p63-0x08_Raising_The_Bar_For_Windows_Rootkit_Detection.txt
http://www.phrack.org/phrack/63/p63-0x08_Raising_The_Bar_For_Windows_Rootkit_Detection.txt
http://rootkit.com/project.php?id=12
http://rootkit.com/newsread.php?newsid=316
http://uninformed.org/?v=3&a=7&t=sumry
http://www.microsoft.com/whdc/devtools/debugging/default.mspx

	Foreword
	Introduction
	Scanning Memory
	Retrieving Pool Ranges
	Locking Memory

	Detecting Executive Objects
	Generic Object Information
	Validating Pool Block Information
	Object Specific Signatures
	Process Objects
	Thread Objects
	Driver Objects
	Device Objects
	Miscellaneous

	Found An Object, Now What?
	Process Objects
	Thread Objects
	Driver Objects
	Device Objects

	Breaking Signatures
	Pointer Based Signatures
	N-Depth Pointer Validation
	Miscellaneous

	GrepExec: The Tool
	The Signature
	Usage
	Sample Output

	Conclusion

