
A Catalog of
Windows Local Kernel-mode Backdoor Techniques

August, 2007

skape Skywing
mmiller@hick.org Skywing@valhallalegends.com

Contents

1 Introduction 1

2 Techniques 2

2.1 Image Patches 3

2.1.1 Function Prologue Hooking . . 3

2.1.2 Disabling SeAccessCheck . . . 4

2.2 Descriptor Tables 5

2.2.1 IDT 5

2.2.2 GDT / LDT 6

2.2.3 SSDT 7

2.3 Model-specific Registers 8

2.3.1 IA32 SYSENTER EIP 8

2.4 Page Table Entries 9

2.5 Function Pointers 10

2.5.1 Import Address Table 12

2.5.2 KiDebugRoutine 13

2.5.3 KTHREAD’s SuspendApc . . . 15

2.5.4 Create Thread Notify Routine 16

2.5.5 Object Type Initializers 17

2.5.6 PsInvertedFunctionTable . . . 17

2.5.7 Delayed Procedures 20

2.6 Asynchronous Read Loop 20

2.7 Leaking CS 21

3 Prevention & Mitigation 22

4 Running Code in Kernel-Mode 23

5 PatchGuard versus Rootkits 24

6 Acknowledgements 25

7 Conclusion 25

Abstract

This paper presents a detailed catalog of techniques
that can be used to create local kernel-mode back-
doors on Windows. These techniques include func-
tion trampolines, descriptor table hooks, model-
specific register hooks, page table modifications, as
well as others that have not previously been de-
scribed. The majority of these techniques have been
publicly known far in advance of this paper. How-
ever, at the time of this writing, there appears to
be no detailed single point of reference for many of
them. The intention of this paper is to provide a solid
understanding on the subject of local kernel-mode
backdoors. This understanding is necessary in order
to encourage the thoughtful discussion of potential
countermeasures and perceived advancements. In the
vein of countermeasures, some additional thoughts
are given to the common misconception that Patch-
Guard, in its current design, can be used to prevent
kernel-mode rootkits.

1 Introduction

The classic separation of privileges between user-
mode and kernel-mode has been a common feature
included in most modern operating systems. This
separation allows operating systems to make security
guarantees relating to process isolation, kernel-user
isolation, kernel-mode integrity, and so on. These se-
curity guarantees are needed in order to prevent a
lesser privileged user-mode process from being able
to take control of the system itself. A kernel-mode
backdoor is one method of bypassing these security
restrictions.

There are many different techniques that can be used
to backdoor the kernel. For the purpose of this doc-
ument, a backdoor will be considered to be some-
thing that provides access to resources that would
otherwise normally be restricted by the kernel. These
resources might include executing code with kernel-
mode privileges, accessing kernel-mode data, dis-

1

abling security checks, and so on. To help further
limit the scope of this document, the authors will fo-
cus strictly on techniques that can be used to provide
local backdoors into the kernel on Windows. In this
context, a local backdoor is a backdoor that does not
rely on or make use of a network connection to pro-
vide access to resources. Instead, local backdoors can
be viewed as ways of weakening the kernel in an effort
to provide access to resources from non-privileged en-
tities, such as user-mode processes.

The majority of the backdoor techniques discussed
in this paper have been written about at length and
in great detail in many different publications[20, 8,
12, 18, 19, 21, 25, 26]. The primary goal of this pa-
per is to act as a point of reference for some of the
common, as well as some of the not-so-common, lo-
cal kernel-mode backdoor techniques. The authors
have attempted to include objective measurements
for each technique along with a description of how
each technique works. As a part of defining these ob-
jective measurements, the authors have attempted to
research the origins of some of the more well-known
backdoor techniques. Since many of these techniques
have been used for such a long time, the origins have
proven somewhat challenging to uncover.

The structure of this paper is as follows. In §2, each of
the individual techniques that can be used to provide
a local kernel-mode backdoor are discussed in detail.
§3 provides a brief discussion into general strategies
that might be employed to prevent some of the tech-
niques that are discussed. §4 attempts to refute some
of the common arguments against preventing kernel-
mode backdoors in and of themselves. Finally, §5 at-
tempts to clarify why Microsoft’s PatchGuard should
not be considered a security solution with respect to
kernel-mode backdoors.

2 Techniques

To help properly catalog the techniques described in
this section, the authors have attempted to include
objective measurements of each technique. These

measurements are broken down as follows:

• Category

The authors have chosen to adopt Joanna
Rutkowska’s malware categorization in the inter-
est of pursuing a standardized classification[34].
This model describes three types of malware.
Type 0 malware categorizes non-intrusive mal-
ware; Type I includes malware that modifies
things that should otherwise never be modified
(code segments, MSRs, etc); Type II includes
malware that modifies things that should be
modified (global variables, other data); Type III
is not within the scope of this document[33, 34].

In addition to the four malware types described
by Rutkowska, the authors propose Type IIa
which would categorize writable memory that
should effectively be considered write-once in a
given context. For example, when a global DPC
is initialized, the DpcRoutine can be considered
write-once. The authors consider this to be a
derivative of Type II due to the fact that the
memory remains writable and is less likely to be
checked than that of Type I.

• Origin

If possible, the first known instance of the tech-
nique’s use or some additional background on its
origin is given.

• Capabilities

The capabilities the backdoor offers. This can be
one or more of the following: kernel-mode code
execution, access to kernel-mode data, access to
restricted resources. If a technique allows kernel-
mode code execution, then it implicitly has all
other capabilities listed.

• Considerations

Any restrictions or special points that must be
made about the use of a given technique.

• Covertness

A description of how easily the use of a given
technique might be detected.

2

Since many of the techniques described in this docu-
ment have been known for quite some time, the au-
thors have taken a best effort approach to identifying
sources of the original ideas. In many cases, this has
proved to be difficult or impossible. For this reason,
the authors request that any inaccuracy in citation
be reported so that it may be corrected in future re-
leases of this paper.

2.1 Image Patches

Perhaps the most obvious approach that can be used
to backdoor the kernel involves the modification of
code segments used by the kernel itself. This could
include modifying the code segments of kernel-mode
images like ntoskrnl.exe, ndis.sys, ntfs.sys, and
so on. By making modifications to these code seg-
ments, it is possible to hijack kernel-mode execution
whenever a hooked function is invoked. The possibil-
ities surrounding the modification of code segments
are limited only by what the kernel itself is capable
of doing.

2.1.1 Function Prologue Hooking

Function hooking is the process of intercepting calls
to a given function by redirecting those calls to an
alternative function. The concept of function hook-
ing has been around for quite some time and it’s un-
clear who originally presented the idea. There are
a number of different libraries and papers that exist
which help to facilitate the hooking of functions[21].
With respect to local kernel-mode backdoors, func-
tion hooking is an easy and reliable method of cre-
ating a backdoor. There are a few different ways
in which functions can be hooked. One of the most
common techniques involves overwriting the prologue
of the function to be hooked with an architecture-
specific jump instruction that transfers control to
an alternative function somewhere else in memory.
This is the approach taken by Microsoft’s Detours
library[21]. While prologue hooks are conceptually
simple, there is actually quite a bit of code needed to

implement them properly.

In order to implement a prologue hook in a portable
and reliable manner, it is often necessary to make use
of a disassembler that is able to determine the size,
in bytes, of individual instructions. The reason for
this is that in order to perform the prologue over-
write, the first few bytes of the function to be hooked
must be overwritten by a control transfer instruction
(typically a jump). On the Intel architecture, control
transfer instructions can have one of three operands:
a register, a relative offset, or a memory operand.
Each operand type controls the size of the jump in-
struction that will be needed: 2 bytes, 5 bytes, and 6
bytes, respectively. The disassembler makes it possi-
ble to copy the first n instructions from the function’s
prologue prior to performing the overwrite. The value
of n is determined by disassembling each instruction
in the prologue until the number of bytes disassem-
bled is greater than or equal to the number of bytes
that will be overwritten when hooking the function.

The reason the first n instructions must be saved in
their entirety is to make it possible for the original
function to be called by the hook function. In order to
call the original version of the function, a small stub
of code must be generated that will execute the first
n instructions of the function’s original prologue fol-
lowed by a jump to instruction n + 1 in the original
function’s body. This stub of code has the effect of al-
lowing the original function to be called without it be-
ing diverted by the prologue overwrite. This method
of implementing function prologue hooks is used ex-
tensively by Detours and other hooking libraries[21].

Recent versions of Windows, such as XP SP2 and
Vista, include image files that come with a more
elegant way of hooking a function with a function
prologue overwrite. In fact, these images have been
built with a compiler enhancement that was designed
specifically to improve Microsoft’s ability to hook its
own functions during runtime. The enhancement in-
volves creating functions with a two byte no-op in-
struction, such as a mov edi, edi, as the first in-
struction of a function’s prologue. In addition to
having this two byte instruction, the compiler also
prefixes 5 no-op instructions to the function itself.

3

The two byte no-op instruction provides the neces-
sary storage for a two byte relative short jump in-
struction to be placed on top of it. The relative short
jump, in turn, can then transfer control into another
relative jump instruction that has been placed in the
5 bytes that were prefixed to the function itself. The
end result is a more deterministic way of hooking a
function using a prologue overwrite that does not rely
on a disassembler. A common question is why a two
byte no-op instruction was used rather than two in-
dividual no-op instructions. The answer for this has
two parts. First, a two byte no-op instruction can
be overwritten in an atomic fashion whereas other
prologue overwrites, such as a 5 byte or 6 byte over-
write, cannot. The second part has to do with the
fact that having a two byte no-op instruction prevents
race conditions associated with any thread executing
code from within the set of bytes that are overwrit-
ten when the hook is installed. This race condition is
common to any type of function prologue overwrite.

To better understand this race condition, consider
what might happen if the prologue of a function had
two single byte no-op instructions. Prior to this func-
tion being hooked, a thread executes the first no-op
instruction. In between the execution of this first
no-op and the second no-op, the function in question
is hooked in the context of a second thread and the
first two bytes are overwritten with the opcodes asso-
ciated with a relative short jump instruction, such as
0xeb and 0xf9. After the prologue overwrite occurs,
the first thread begins executing what was originally
the second no-op instruction. However, now that the
function has been hooked, the no-op instruction may
have been changed from 0x90 to 0xf9. This may
have disastrous effects depending on the context that
the hook is executed in. While this race condition
may seem unlikely, it is nevertheless feasible and can
therefore directly impact the reliability of any solu-
tion that uses prologue overwrites in order to hook
functions.

Category: Type I

Origin: The concept of patching code has “existed
since the dawn of digital computing”[21].

Capabilities: Kernel-mode code execution

Considerations: The reliability of a function pro-
logue hook is directly related to the reliability of the
disassembler used and the number of bytes that are
overwritten in a function prologue. If the two byte
no-op instruction is not present, then it is unlikely
that a function prologue overwrite will be able to
be multiprocessor safe. Likewise, if a disassembler
does not accurately count the size of instructions in
relation to the actual processor, then the function
prologue hook may fail, leading to an unexpected
crash of the system. One other point that is worth
mentioning is that authors of hook functions must
be careful not to inadvertently introduce instability
issues into the operating system by failing to prop-
erly sanitize and check parameters to the function
that is hooked. There have been many examples
where legitimate software has gone the route of hook-
ing functions without taking these considerations into
account[38].

Covertness: At the time of this writing, the use
of function prologue overwrites is considered to not
be covert. It is trivial for tools, such as Joanna
Rutkowska’s System Virginity Verifier[32], to com-
pare the in-memory version of system images with
the on-disk versions in an effort to detect in-memory
alterations. The Windows Debugger (windbg) will
also make an analyst aware of differences between
in-memory code segments and their on-disk counter-
parts.

2.1.2 Disabling SeAccessCheck

In Phrack 55, Greg Hoglund described the bene-
fits of patching nt!SeAccessCheck so that it never
returns access denied[19]. This has the effect of
causing access checks on securable objects to always
grant access, regardless of whether or not the ac-
cess would normally be granted. As a result, non-
privileged users can directly access otherwise privi-
leged resources. This simple modification does not
directly make it possible to execute privileged code,
but it does indirectly facilitate it by allowing non-

4

privileged users to interact with and modify system
processes.

Category: Type I

Origin: Greg Hoglund was the first person to pub-
licly identify this technique in September, 1999[19].

Capabilities: Access to restricted resources.

Covertness: Like function prologue overwrites,
the nt!SeAccessCheck patch can be detected
through differences between the mapped image of
ntoskrnl.exe and the on-disk version.

2.2 Descriptor Tables

The x86 architecture has a number of different de-
scriptor tables that are used by the processor to han-
dle things like memory management (GDT), inter-
rupt dispatching (IDT), and so on. In addition to
processor-level descriptor tables, the Windows oper-
ating system itself also includes a number of distinct
software-level descriptor tables, such as the SSDT.
The majority of these descriptor tables are heavily re-
lied upon by the operating system and therefore rep-
resent a tantalizing target for use in backdoors. Like
the function hooking technique described in 2.1.1, all
of the techniques presented in this subsection have
been known about for a significant amount of time.
The authors have attempted, when possible, to iden-
tify the origins of each technique.

2.2.1 IDT

The Interrupt Descriptor Table (IDT) is a processor-
relative structure that is used when dispatching in-
terrupts. Interrupts are used by the processor as a
means of interrupting program execution in order to
handle an event. Interrupts can occur as a result of a
signal from hardware or as a result of software assert-
ing an interrupt through the int instruction[23]. The
IDT contains 256 descriptors that are associated with
the 256 interrupt vectors supported by the processor.
Each IDT descriptor can be one of three types of gate

descriptors (task, interrupt, trap) which are used to
describe where and how control should be transferred
when an interrupt for a particular vector occurs. The
base address and limit of the IDT are stored in the
idtr register which is populated through the lidt
instruction. The current base address and limit of
the idtr can be read using the sidt instruction.

The concept of an IDT hook has most likely been
around since the origin of the concept of interrupt
handling. In most cases, an IDT hook works by redi-
recting the procedure entry point for a given IDT
descriptor to an alternative location. Conceptually,
this is the same process involved in hooking any func-
tion pointer (which is described in more detail in 2.5).
The difference comes as a result of the specific code
necessary to hook an IDT descriptor.

On the x86 processor, each IDT descriptor is an eight
byte data structure. IDT descriptors that are either
an interrupt gate or trap gate descriptor contain the
procedure entry point and code segment selector to
be used when the descriptor’s associated interrupt
vector is asserted. In addition to containing control
transfer information, each IDT descriptor also con-
tains additional flags that further control what ac-
tions are taken. The Windows kernel describes IDT
descriptors using the following structure:

kd> dt _KIDTENTRY

+0x000 Offset : Uint2B

+0x002 Selector : Uint2B

+0x004 Access : Uint2B

+0x006 ExtendedOffset : Uint2B

In the above data structure, the Offset field holds
the low 16 bits of the procedure entry point and the
ExtendedOffset field holds the high 16 bits. Using
this knowledge, an IDT descriptor could be hooked by
redirecting the procedure entry point to an alternate
function. The following code illustrates how this can
be accomplished:

typedef struct _IDT

{

USHORT Limit;

PIDT_DESCRIPTOR Descriptors;

5

} IDT, *PIDT;

static NTSTATUS HookIdtEntry(

IN UCHAR DescriptorIndex,

IN ULONG_PTR NewHandler,

OUT PULONG_PTR OriginalHandler OPTIONAL)

{

PIDT_DESCRIPTOR Descriptor = NULL;

IDT Idt;

__asm sidt [Idt]

Descriptor = &Idt.Descriptors[DescriptorIndex];

*OriginalHandler =

(ULONG_PTR)(Descriptor->OffsetLow +

(Descriptor->OffsetHigh << 16));

Descriptor->OffsetLow =

(USHORT)(NewHandler & 0xffff);

Descriptor->OffsetHigh =

(USHORT)((NewHandler >> 16) & 0xffff);

__asm lidt [Idt]

return STATUS_SUCCESS;

}

In addition to hooking an individual IDT descriptor,
the entire IDT can be hooked by creating a new ta-
ble and then setting its information using the lidt
instruction.

Category: Type I; although some portions of the
IDT may be legitimately hooked.

Origin: The IDT hook has its origins in Interrupt
Vector Table (IVT) hooks. In October, 1999, Prasad
Dabak et al wrote about IVT hooks[31]. Sadly, they
also seemingly failed to cite their sources. It’s cer-
tain that IVT hooks have existed prior to 1999. The
oldest virus citation the authors could find was from
1994, but DOS was released in 1981 and it is likely
the first IVT hooks were seen shortly thereafter[7]. A
patent that was filed in December, 1985 entitled Dual
operating system computer talks about IVT “reloca-
tion” in a manner that suggests IVT hooking of some
form[3].

Capabilities: Kernel-mode code execution.

Covertness: Detection of IDT hooks is often triv-

ial and is a common practice for rootkit detection
tools[32].

2.2.2 GDT / LDT

The Global Descriptor Table (GDT) and Local De-
scriptor Table (LDT) are used to store segment de-
scriptors that describe a view of a system’s address
space1. Segment descriptors include the base address,
limit, privilege information, and other flags that are
used by the processor when translating a logical ad-
dress (seg:offset) to a linear address. Segment se-
lectors are integers that are used to indirectly ref-
erence individual segment descriptors based on their
offset into a given descriptor table. Software makes
use of segment selectors through segment registers,
such as CS, DS, ES, and so on. More detail about the
behavior on segmentation can be found in the x86
and x64 system programming manuals[1].

In Phrack 55, Greg Hoglund described the poten-
tial for abusing conforming code segments[19]. A
conforming code segment, as opposed to a non-
conforming code segment, permits control transfers
where CPL is numerically greater than DPL. How-
ever, the CPL is not altered as a result of this type
of control transfer. As such, effective privileges of
the caller are not changed. For this reason, it’s un-
clear how this could be used to access kernel-mode
memory due to the fact that page protections would
still prevent lesser privileged callers from accessing
kernel-mode pages when paging is enabled.

Derek Soeder identified an awesome flaw in 2003 that
allowed a user-mode process to create an expand-
down segment descriptor in the calling process’
LDT[40]. An expand-down segment descriptor in-
verts the meaning of the limit and base address as-
sociated with a segment descriptor. In this way, the
limit describes the lower limit and the base address
describes the upper limit. The reason this is useful is
due to the fact that when kernel-mode routines val-
idate addresses passed in from user-mode, they as-
sume flat segments that start at base address zero.

1Each processor has its own GDT

6

This is the same thing as assuming that a logical ad-
dress is equivalent to a linear address. However, when
expand-down segment descriptors are used, the linear
address will reference a memory location that can be
in stark contrast to the address that’s being validated
by kernel-mode. In order to exploit this condition to
escalate privileges, all that’s necessary is to identify a
system service in kernel-mode that will run with es-
calated privileges and make use of segment selectors
provided by user-mode without properly validating
them. Derek gives an example of a MOVS instruction
in the int 0x2e handler. This trick can be abused in
the context of a local kernel-mode backdoor to pro-
vide a way for user-mode code to be able to read and
write kernel-mode memory.

In addition to abusing specific flaws in the way mem-
ory can be referenced through the GDT and LDT, it’s
also possible to define custom gate descriptors that
would make it possible to call code in kernel-mode
from user-mode[23]. One particularly useful type of
gate descriptor, at least in the context of a backdoor,
is a call gate descriptor. The purpose of a call gate is
to allow lesser privileged code to call more privileged
code in a secure fashion[45]. To abuse this, a back-
door can simply define its own call gate descriptor
and then make use of it to run code in the context of
the kernel.

Category: Type IIa; with the exception of the LDT.
The LDT may be better classified as Type II consid-
ering it exposes an API to user-mode that allows the
creation of custom LDT entries (NtSetLdtEntries).

Origin: It’s unclear if there were some situational
requirements that would be needed in order to abuse
the issue described by Greg Hoglund. The flaw iden-
tified by Derek Soeder in 2003 was an example of a
recurrence of an issue that was found in older ver-
sions of other operating systems, such as Linux. For
example, a mailing list post made by Morten Welin-
der to LKML in 1996 describes a fix for what appears
to be the same type of issue that was identified by
Derek[44]. Creating a custom gate descriptor for use
in the context of a backdoor has been used in the
past. Greg Hoglund described the use of call gates in
the context of a rootkit in 1999[19]

Capabilities: In the case of the expand-down seg-
ment descriptor, access to kernel-mode data is pos-
sible. This can also indirectly lead to kernel-mode
code execution, but it would rely on another back-
door technique. If a gate descriptor is abused, direct
kernel-mode code execution is possible.

Covertness: It is entirely possible to write have code
that will detect the addition or alteration of entries
in the GDT or each individual process LDT. For ex-
ample, PatchGuard will currently detect alterations
to the GDT.

2.2.3 SSDT

The System Service Descriptor Table (SSDT) is used
by the Windows kernel when dispatching system
calls. The SSDT itself is exported in kernel-mode
through the nt!KeServiceDescriptorTable global
variable. This variable contains information relat-
ing to system call tables that have been registered
with the operating. In contrast to other operating
systems, the Windows kernel supports the dynamic
registration (nt!KeAddSystemServiceTable) of new
system call tables at runtime. The two most common
system call tables are those used for native and GDI
system calls.

In the context of a local kernel-mode backdoor, sys-
tem calls represent an obvious target due to the fact
that they are implicitly tied to the privilege boundary
that exists between user-mode and kernel-mode. The
act of hooking a system call handler in kernel-mode
makes it possible to expose a privileged backdoor into
the kernel using the operating system’s well-defined
system call interface. Furthermore, hooking system
calls makes it possible for the backdoor to alter data
that is seen by user-mode and thus potentially hide
its presence to some degree.

In practice, system calls can be hooked on Win-
dows using two distinct strategies. The first strategy
involves using generic function hooking techniques
which are described in 2.1.1. The second strategy in-
volves using the function pointer hooking technique
which is described in 2.5. Using the function pointer

7

hooking involves simply altering the function pointer
associated with a specific system call index by ac-
cessed the system call table which contains the sys-
tem call that is to be hooked.

The following code shows a very simple illustration
of how one might go about hooking a system call
in the native system call table on 32-bit versions of
Windows2:

PVOID HookSystemCall(

PVOID SystemCallFunction,

PVOID HookFunction)

{

ULONG SystemCallIndex =

*(ULONG *)((PCHAR)SystemCallFunction+1);

PVOID *NativeSystemCallTable =

KeServiceDescriptorTable[0];

PVOID OriginalSystemCall =

NativeSystemCallTable[SystemCallIndex];

NativeSystemCallTable[SystemCallIndex] = HookFunction;

return OriginalSystemCall;

}

Category: Type I if prologue hook is used. Type
IIa if the function pointer hook is used. The SSDT
(both native and GDI) should effectively be consid-
ered write-once.

Origin: System call hooking has been used exten-
sively for quite some time. Since this technique has
become so well-known, its actual origins are unclear.
The earliest description the authors could find was
from M. B. Jones in a paper from 1993 entitled Inter-
position agents: Transparently interposing user code
at the system interface[27]. Jones explains in his sec-
tion on related work that he was unable to find any
explicit research on the subject prior of agent-based
interposition prior to his writing. However, it seems
clear that system calls were being hooked in an ad-
hoc fashion far in advance of this point. The authors
were unable to find many of the papers cited by Jones.
Plaguez appears to be one of the first (Jan, 1998) to
publicly illustrate the usefulness of system call hook-

2System call hooking on 64-bit versions of Windows would
require PatchGuard to be disabled

ing in Linux with a specific eye toward security in
Phrack 52[30].

Capabilities: Kernel-mode code execution.

Considerations: On certain versions of Windows
XP, the SSDT is marked as read-only. This must be
taken into account when attempting to write to the
SSDT across multiple versions of Windows.

Covertness: System call hooks on Windows are very
easy to detect. Comparing the in-memory SSDTs
with the on-disk versions is one of the most common
strategies employed.

2.3 Model-specific Registers

Intel processors support a special category of
processor-specific registers known as Model-specific
Registers (MSRs). MSRs provide software with the
ability to control various hardware and software fea-
tures. Unlike other registers, MSRs are tied to a spe-
cific processor model and are not guaranteed to be
supported in future versions of a processor line. Some
of the features that MSRs offer include enhanced per-
formance monitoring and debugging, among other
things. Software can read MSRs using the rdmsr in-
struction and write MSRs using the wrmsr[23].

This subsection will describe some of the MSRs that
may be useful in the context of a local kernel-mode
backdoor.

2.3.1 IA32 SYSENTER EIP

The Pentium II introduced enhanced support for
transitioning between user-mode and kernel-mode.
This support was provided through the introduction
of two new instructions: sysenter and sysexit3.
When a user-mode application wishes to transition
to kernel-mode, it issues the sysenter instruction.
When the kernel is ready to return to user-mode,

3AMD processors also introduced enhanced new instruc-
tions to provide this feature

8

it issues the sysexit instruction. Unlike the the
call instruction, the sysenter instruction takes no
operands. Instead, this instruction uses three specific
MSRs that are initialized by the operating system as
the target for control transfers[23].

The IA32 SYSENTER CS (0x174) MSR is used by
the processor to set the kernel-mode CS. The
IA32 SYSENTER EIP (0x176) MSR contains the vir-
tual address of the kernel-mode entry point that
code should begin executing at once the transition
has completed. The third MSR, IA32 SYSENTER ESP
(0x175), contains the virtual address that the stack
pointer should be set to. Of these three MSRs,
IA32 SYSENTER EIP is the most interesting in terms
of its potential for use in the context of a backdoor.
Setting this MSR to the address of a function con-
trolled by the backdoor makes it possible for the
backdoor to intercept all system calls after they have
trapped into kernel-mode. This provides a very pow-
erful vantage point.

For more information on the behavior of the
sysenter and sysexit instructions, the reader
should consult both the Intel manuals and John Gul-
brandsen’s article[23, 15].

Category: Type I

Origin: This feature is provided for the explicit pur-
pose of allowing an operating system to control the
behavior of the sysenter instruction. As such, it
is only logical that it can also be applied in the
context of a backdoor. Kimmo Kasslin mentions a
virus from December, 2005 that made use of MSR
hooks[25]. Earlier that year in February, fuzen op
from rootkit.com released a proof of concept[12].

Capabilities: Kernel-mode code execution

Considerations: This technique is restricted by the
fact that not all processors support this MSR. Fur-
thermore, user-mode processes are not necessarily re-
quired to use it in order to transition into kernel-mode
when performing a system call. These facts limit the
effectiveness of this technique as it is not guaranteed
to work on all machines.

Covertness: Changing the value of the
IA32 SYSENTER EIP MSR can be detected. For
example, PatchGuard currently checks to see if the
equivalent AMD64 MSR has been modified as a
part of its polling checks[36]. It is more difficult for
third party vendors to perform this check due to the
simple fact that the default value for this MSR is an
unexported symbol named nt!KiFastCallEntry:

kd> rdmsr 176

msr[176] = 00000000‘804de6f0

kd> u 00000000‘804de6f0

nt!KiFastCallEntry:

804de6f0 b923000000 mov ecx,23h

Without having symbols, third parties have a more
difficult time of distinguishing between a value that
is sane and one that is not.

2.4 Page Table Entries

When operating in protected mode, x86 processors
support virtualizing the address space through the
use of a feature known as paging. The paging feature
makes it possible to virtualize the address space by
adding a translation layer between linear addresses
and physical addresses4. To translate addresses, the
processor uses portions of the address being refer-
enced to index directories and tables that convey flags
and physical address information that describe how
the translation should be performed. The majority of
the details on how this translation is performed are
outside of the scope of this document. If necessary,
the reader should consult section 3.7 of the Intel Sys-
tem Programming Manual [23]. Many other papers in
the references also discuss this topic[41].

The paging system is particularly interesting due to
its potential for abuse in the context of a backdoor.
When the processor attempts to translate a linear
address, it walks a number of page tables to deter-
mine the associated physical address. When this oc-
curs, the processor makes a check to ensure that the

4When paging is not enabled, linear addresses are equiva-
lent to physical addresses

9

task referencing the address has sufficient rights to
do so. This access check is enforced by checking
the User/Supervisor bit of the Page-Directory En-
try (PDE) and Page-Table Entry (PTE) associated
with the page. If this bit is clear, only the supervisor
(privilege level 0) is allowed to access the page. If
the bit is set, both supervisor and user are allowed to
access the page5.

The implications surrounding this flag should be ob-
vious. By toggling the flag in the PDE and PTE asso-
ciated with an address, a backdoor can gain access
to read or write kernel-mode memory. This would
indirectly make it possible to gain code execution by
making use of one of the other techniques listed in
this document.

Category: Type II

Origin: The modification of PDE and PTE entries
has been supported since the hardware paging’s in-
ception. The authors were not able to find an exact
source of the first use of this technique in a backdoor.
There have been a number of examples in recent years
of tools that abuse the supervisor bit in one way or
another[29, 41]. PaX team provided the first docu-
mentation of their PAGEEXEC code in March, 2003.
In January, 1998, Mythrandir mentions the supervi-
sor bit in phrack 52 but doesn’t explicitly call out
how it could be abused[28].

Capabilities: Access to kernel-mode data.

Considerations: Code that attempts to implement
this approach would need to properly support PAE
and non-PAE processors on x86 in order to work reli-
ably. This approach is also extremely dangerous and
potentially unreliable depending on how it interacts
with the memory manager. For example, if pages are
not properly locked into physical memory, they may
be pruned and thus any PDE or PTE modifications
would be lost. This would result in the user-mode
process losing access to a specific page.

Covertness: This approach could be considered

5This isn’t always the case depending on whether or not
the WP bit is set in CR0

fairly covert without the presence of some tool capa-
ble of intercepting PDE or PTE modifications. Locking
pages into physical memory may make it easier to de-
tect in a polling fashion by walking the set of locked
pages and checking to see if their associated PDE or
PTE has been made accessible to user-mode.

2.5 Function Pointers

The use of function pointers to indirectly transfer
control of execution from one location to another is
used extensively by the Windows kernel[18]. Like the
function prologue overwrite described in 2.1.1, the act
of hooking a function by altering a function pointer is
an easy way to intercept future calls to a given func-
tion. The difference, however, is that hooking a func-
tion by altering a function pointer will only intercept
indirect calls made to the hooked function through
the function pointer. Though this may seem like a
fairly significant limitation, even these restrictions do
not drastically limit the set of function pointers that
can be abused to provide a kernel-mode backdoor.

The concept itself should be simple enough. All
that’s necessary is to modify the contents of a given
function pointer to point at untrusted code. When
the function is invoked through the function pointer,
the untrusted code is executed instead. If the un-
trusted code wishes to be able to call the function
that is being hooked, it can save the address that
is stored in the function pointer prior to overwrit-
ing it. When possible, hooking a function through a
function pointer is a simple and elegant solution that
should have very little impact on the stability of the
system (with obvious exception to the quality of the
replacement function).

Regardless of what approach is taken to hook a
function, an obvious question is where the backdoor
code associated with a given hook function should
be placed. There are really only two general mem-
ory locations that the code can be stored. It can ei-
ther stored in user-mode, which would generally make
it specific to a given process, or kernel-mode, which
would make it visible system wide. Deciding which

10

of the two locations to use is a matter of determining
the contextual restrictions of the function pointer be-
ing leveraged. For example, if the function pointer is
called through at a raised IRQL, such as DISPATCH,
then it is not possible to store the hook function’s
code in pageable memory. Another example of a re-
striction is the process context in which the function
pointer is used. If a function pointer may be called
through in any process context, then there are only
a finite number of locations that the code could be
placed in user-mode. It’s important to understand
some of the specific locations that code may be stored
in

Perhaps the most obvious location that can be used
to store code that is to execute in kernel-mode
is the kernel pools, such as the PagedPool and
NonPagedPool, which are used to store dynamically
allocated memory. In some circumstances, it may
also be possible to store code in regions of mem-
ory that contain code or data associated with de-
vice drivers. While these few examples illustrate that
there is certainly no shortage of locations in which to
store code, there are a few locations in particular that
are worth calling out.

One such location is composed of a single phys-
ical page that is shared between user-mode and
kernel-mode. This physical page is known as
SharedUserData and it is mapped into user-mode as
read-only and kernel-mode as read-write. The virtual
address that this physical page is mapped at is static
in both user-mode (0x7ffe0000) and kernel-mode
(0xffdf0000) on all versions of Windows NT+6.
There is also plenty of unused memory within the
page that is allocated for SharedUserData. The fact
that the mapping address is static makes it a useful
location to store small amounts of code without need-
ing to allocate additional storage from the paged or
non-paged pool[24].

Though the SharedUserData mapping is quite use-
ful, there is actually an alternative location that can
be used to store code that is arguably more covert.

6The virtual mappings are no longer executable as of Win-
dows XP SP2. However, it is entirely possible for a backdoor
to alter these page permissions.

This approach involves overwriting a function pointer
with the address of some code from the virtual map-
ping of the native DLL, ntdll.dll. The native DLL
is special in that it is the only DLL that is guaran-
teed to be mapped into the context of every process,
including the System process. It is also mapped at
the same base address in every process due to as-
sumptions made by the Windows kernel. While these
are useful qualities, the best reason for using the
ntdll.dll mapping to store code is that doing so
makes it possible to store code in a process-relative
fashion. Understanding how this works in practice
requires some additional explanation.

The native DLL, ntdll.dll, is mapped into the ad-
dress space of the System process and subsequent
processes during kernel and process initialization, re-
spectively. This mapping is performed in kernel-
mode by nt!PspMapSystemDll. One can observe
the presence of this mapping in the context of the
System process through a debugger as shown below.
These same basic steps can be taken to confirm that
ntdll.dll is mapped into other processes as well7 :

kd> !process 0 0 System

PROCESS 81291660 SessionId: none Cid: 0004

Peb: 00000000 ParentCid: 0000

DirBase: 00039000 ObjectTable: e1000a68

HandleCount: 256.

Image: System

kd> !process 81291660

PROCESS 81291660 SessionId: none Cid: 0004

Peb: 00000000 ParentCid: 0000

DirBase: 00039000 ObjectTable: e1000a68

HandleCount: 256.

Image: System

VadRoot 8128f288 Vads 4

...

kd> !vad 8128f288

VAD level start end commit

...

81207d98 (1) 7c900 7c9af 5 Mapped Exe

kd> dS poi(poi(81207d98+0x18)+0x24)+0x30

e13591a8 "\WINDOWS\system32\ntdll.dll"

To make use of the ntdll.dll mapping as a loca-
tion in which to store code, one must understand the

7The command !vad is used to dump the virtual address
directory for a given process. This directory contains descrip-
tions of memory regions within a given process.

11

implications of altering the contents of the mapping
itself. Like all other image mappings, the code pages
associated with ntdll.dll are marked as Copy-on-
Write (COW) and are initially shared between all
processes. When data is written to a page that has
been marked with COW, the kernel allocates a new
physical page and copies the contents of the shared
page into the newly allocated page. This new physical
page is then associated with the virtual page that is
being written to. Any changes made to the new page
are observed only within the context of the process
that is making them. This behavior is why altering
the contents of a mapping associated with an image
file do not lead to changes appearing in all process
contexts.

Based on the ability to make process-relative changes
to the ntdll.dll mapping, one is able to store code
that will only be used when a function pointer is
called through in the context of a specific process.
When not called in a specific process context, what-
ever code exists in the default mapping of ntdll.dll
will be executed. In order to better understand how
this may work, it makes sense to walk through a con-
crete example.

In this example, a rootkit has opted to create
a backdoor by overwriting the function pointer
that is used when dispatching IRPs using the
IRP MJ FLUSH BUFFERS major function for a specific
device object. The prototype for the function that
handles IRP MJ FLUSH BUFFERS IRPs is shown below:

NTSTATUS DispatchFlushBuffers(

IN PDEVICE_OBJECT DeviceObject,

IN PIRP Irp);

In order to create a context-specific backdoor, the
rootkit has chosen to overwrite the function pointer
described above with an address that resides within
ntdll.dll. By default, the rootkit wants all pro-
cesses except those that are aware of the back-
door to simply have a no-operation occur when
IRP MJ FLUSH BUFFERS is sent to the device ob-
ject. For processes that are aware of the backdoor,
the rootkit wants arbitrary code execution to oc-

cur in kernel-mode. To accomplish this, the func-
tion pointer should be overwritten with an address
that resides in ntdll.dll that contains a ret 0x8
instruction. This will simply cause invocations of
IRP MJ FLUSH BUFFERS to return (without complet-
ing the IRP). The location of this ret 0x8 should
be in a portion of code that is rarely executed in
user-mode. For processes that wish to execute arbi-
trary code in kernel-mode, it’s as simple as altering
the code that exists at the address of the ret 0x8
instruction. After altering the code, the process only
needs to issue an IRP MJ FLUSH BUFFERS through the
FlushFileBuffers function on the affected device
object. The context-dependent execution of code is
made possible by the fact that, in most cases, IRPs
are processed in the context of the requesting process.

The remainder of this subsection will describe specific
function pointers that may be useful targets for use
as backdoors. The authors have tried to cover some
of the more intriguing examples of function pointers
that may be hooked. Still, it goes without saying that
there are many more that have not been explicitly
described. The authors would be interested to hear
about additional function pointers that have unique
and useful properties in the context of a local kernel-
mode backdoor.

2.5.1 Import Address Table

The Import Address Table (IAT) of a PE image is
used to store the absolute virtual addresses of func-
tions that are imported from external PE images.
When a PE image is mapped into virtual memory, the
dynamic loader (in kernel-mode, this is ntoskrnl)
takes care of populating the contents of the PE im-
age’s IAT based on the actual virtual address loca-
tions of dependent functions8. The compiler, in turn,
generates code that uses an indirect call instruction
to invoke imported functions. Each imported func-
tion has a function pointer slot in the IAT. In this
fashion, PE images do not need to have any precon-
ceived knowledge of where dependent PE images are

8For the sake of simplicity, bound imports are excluded
from this explanation

12

going to be mapped in virtual memory. Instead, this
knowledge can be postponed until a runtime deter-
mination is made.

The fundamental step involved in hooking an IAT
entry really just boils down to changing a func-
tion pointer. What distinguishes an IAT hook from
other types of function pointer hooks is the context
in which the overwritten function pointer is called
through. Since each PE image has their own IAT,
any hook that is made to a given IAT will implic-
itly only affect the associated PE image. For exam-
ple, consider a situation where both foo.sys and
bar.sys import ExAllocatePoolWithTag. If the
IAT entry for ExAllocatePoolWithTag is hooked in
foo.sys, only those calls made from within foo.sys
to ExAllocatePoolWithTag will be affected. Calls
made to the same function from within bar.sys will
be unaffected. This type of limitation can actually
be a good thing, depending on the underlying moti-
vations for a given backdoor.

Category: Type I; may legitimately be modified,
but should point to expected values.

Origin: The origin of the first IAT hook is unclear.
In January, 2000, Silvio described hooking via the
ELF PLT which is, in some aspects, functionally
equivalent to the IAT in PE images[35].

Capabilities: Kernel-mode code execution

Considerations: Assuming the calling restrictions
of an IAT hook are acceptable for a given backdoor,
there are no additional considerations that need to
be made.

Covertness: It is possible for modern tools to detect
IAT hooks by analyzing the contents of the IAT of
each PE image loaded in kernel-mode. To detect dis-
crepancies, a tool need only check to see if the virtual
address associated with each function in the IAT is
indeed the same virtual address as exported by the
PE image that contains a dependent function.

2.5.2 KiDebugRoutine

The Windows kernel provides an extensive debugging
interface to allow the kernel itself (and third party
drivers) to be debugged in a live, interactive envi-
ronment (as opposed to after-the-fact, post-mortem
crash dump debugging). This debugging interface
is used by a kernel debugger program (kd.exe, or
WinDbg.exe) in order to perform tasks such as the
inspecting the running state (including memory, reg-
isters, kernel state such as processes and threads, and
the like) of the kernel on-demand. The debugging
interface also provides facilities for the kernel to re-
port various events of interest to a kernel debugger,
such as exceptions, module load events, debug print
output, and a handful of other state transitions. As
a result, the kernel debugger interface has “hooks”
built-in to various parts of the kernel for the purpose
of notifying the kernel debugger of these events.

The far-reaching capabilities of the kernel debugger
in combination with the fact that the kernel debug-
ger interface is (in general) present in a compatible
fashion across all OS builds provides an attractive
mechanism that can be used to gain control of a sys-
tem. By subverting KiDebugRoutine to instead point
to a custom callback function, it becomes possible to
surepticiously gain control at key moments (debug
prints, exception dispatching, kernel module loading
are the primary candidates).

The architecture of the kernel debugger event noti-
fication interface can be summed up in terms of a
global function pointer (KiDebugRoutine) in the ker-
nel. A number distinct pieces of code, such as the
exception dispatcher, module loader, and so on are
designed to call through KiDebugRoutine in order to
notify the kernel debugger of events. In order to mini-
mize overhead in scenarios where the kernel debugger
is inactive, KiDebugRoutine is typically set to point
to a dummy function, KdpStub, which performs al-
most no actions and, for the most part, simply re-
turns immediately to the caller. However, when the
system is booted with the kernel debugger enabled,
KiDebugRoutine may be set to an alternate function,
KdpTrap, which passes the information supplied by

13

the caller to the remote debugger.

Although enabling or disabling the kernel debug-
ger has traditionally been a boot-time-only decision,
newer OS builds such as Windows Server 2003 and
beyond have some support for transitioning a system
from a “kernel debugger inactive” state to a “kernel
debugger active” state. As a result, there is some
additional logic now baked into the dummy routine
(KdpStub) which can under some circumstances re-
sult in the debugger being activated on-demand. This
results in control being passed to the actual debug-
ger communication routine (KdpTrap) after an on-
demand kernel debugger initialization. Thus, in some
circumstances, KdpStub will pass control through to
KdpTrap.

Additionally, in Windows Server 2003 and later, it
is possible to disable the kernel debugger on the fly.
This may result in KiDebugRoutine being changed
to refer to KdpStub instead of the boot-time-assigned
KdpTrap. This behavior, combined with the previ-
ous points, is meant to show that provided a sys-
tem is booted with the kernel debugger enabled it
may not be enough to just enforce a policy that
KiDebugRoutine must not change throughout the
lifetime of the system.

Aside from exception dispatching notifiations, most
debug events find their way to KiDebugRoutine
via interrupt 0x2d, otherwise known as “DebugSer-
vice”. This includes user-mode debug print events
as well as kernel mode originated events (such as
kernel module load events). The trap handler
for interrupt 0x2d packages the information sup-
plied to the debug service interrupt into the for-
mat of a special exception that is then dispatched
via KiExceptionDispatch (the normal exception
dispatcher path for interrupt-generated exceptions).
This in turn leads to KiDebugRoutine being called as
a normal part of the exception dispatcher’s operation.

Category: Type IIa, varies. Although on previous
OS versions KiDebugRoutine was essentially write-
once, recent versions allow limited changes of this
value on the fly while the system is booted.

Origin: At the time of this writing, the au-
thors are not aware of existing malware using
KiDebugRoutine.

Capabilities: Redirecting KiDebugRoutine to point
to a caller-controlled location allows control to be
gained during exception dispatching (a very common
occurrence), as well as certain other circumstances
(such as module loading and debug print output).
As an added bonus, because KiDebugRoutine is in-
tegral to the operation of the kernel debugger facility
as a whole, it should be possible to “filter” the events
received by the kernel debugger by manipulation of
which events are actually passed on to KdpTrap, if
a kernel debugger is enabled. However, it should be
noted that other steps would need to be taken to pre-
vent a kernel debugger from detecting the presence of
code, such as the interception of the kernel debugger
read-memory facilities.

Considerations: Depending on how the system
global flags (NtGlobalFlag) are configured, and
whether the system was booted in such a way as
to suppress notification of user mode exceptions to
the kernel debugger, exception events may not al-
ways be delivered to KiDebugRoutine. Also, as
KiDebugRoutine is not exported, it would be neces-
sary to locate it in order to intercept it. Furthermore,
many of the debugger events occur in an arbitrary
context, such that pointing KiDebugRoutine to user
mode (except within ntdll space) may be considered
dangerous. Even while pointing KiDebugRoutine
to ntdll, there is the risk that the system may be
brought down as some debugger events may be re-
ported while the system cannot tolerate paging (e.g.
debug prints). From a thread-safety perspective, an
interlocked exchange on KiDebugRoutine should be
a relatively synchronization-safe operation (however
the new callback routine may never be unmapped
from the address space without some means of en-
suring that no callbacks are active).

Covertness: As KiDebugRoutine is a non-exported,
writable kernel global, it has some inherent defenses
against simple detection techniques. However, in le-
gitimate system operation, there are only two legal
values for KiDebugRoutine: KdpStub, and KdpTrap.

14

Though both of these routines are not exported, a
combination of detection techniques (such as veri-
fying the integrity of read only kernel code, and a
verification that KiDebugRoutine refers to a location
within an expected code region of the kernel mem-
ory image) may make it easier to locate blatant at-
tacks on KiDebugRoutine. For example, simply set-
ting KiDebugRoutine to point to an out-of-kernel lo-
cation could be detected with such an approach, as
could pointing it elsewhere in the kernel and then
writing to it (either the target location would need to
be outside the normal code region, easily detectable,
or normally read-only code would have to be over-
written, also relatively easily detectable). Also, all
versions of PatchGuard protect KiDebugRoutine in
x64 versions of Windows. This means that effective
exploitation of KiDebugRoutine in the long term on
such systems would require an attacker to deal with
PatchGuard. This is considered a relatively minor
difficulty by the authors.

2.5.3 KTHREAD’s SuspendApc

In order to support thread suspension, the Windows
kernel includes a KAPC field named SuspendApc in
the KTHREAD structure that is associated with each
thread running on a system. When thread suspen-
sion is requested, the kernel takes steps to queue the
SuspendApc structure to the thread’s APC queue.
When the APC queue is processed, the kernel invokes
the APC’s NormalRoutine, which is typically initial-
ized to nt!KiSuspendThread, from the SuspendApc
structure in the context of the thread that is being
suspended. Once nt!KiSuspendThread completes,
the thread is suspended. The following shows what
values the SuspendApc is typically initialized to:

kd> dt -r1 _KTHREAD 80558c20

...

+0x16c SuspendApc : _KAPC

+0x000 Type : 18

+0x002 Size : 48

+0x004 Spare0 : 0

+0x008 Thread : 0x80558c20 _KTHREAD

+0x00c ApcListEntry : _LIST_ENTRY [0x0 - 0x0]

+0x014 KernelRoutine : 0x804fa8a1 nt!KiSuspendNop

+0x018 RundownRoutine : 0x805139ed nt!PopAttribNop

+0x01c NormalRoutine : 0x804fa881 nt!KiSuspendThread

+0x020 NormalContext : (null)

+0x024 SystemArgument1: (null)

+0x028 SystemArgument2: (null)

+0x02c ApcStateIndex : 0 ’’

+0x02d ApcMode : 0 ’’

+0x02e Inserted : 0 ’’

Since the SuspendApc structure is specific to a
given KTHREAD, any modification made to a thread’s
SuspendApc.NormalRoutine will affect only that
specific thread. By modifying the NormalRoutine
of the SuspendApc associated with a given thread, a
backdoor can gain arbitrary code execution in kernel-
mode by simply attempting to suspend the thread.
It is trivial for a user-mode application to trigger the
backdoor. The following sample code illustrates how
a thread might execute arbitrary code in kernel-mode
if its SuspendApc has been modified:

SuspendThread(GetCurrentThread());

The following code gives an example of assembly that
implements the technique described above taking into
account the InitialStack insight described in the
considerations below:

public _RkSetSuspendApcNormalRoutine@4

_RkSetSuspendApcNormalRoutine@4 proc

assume fs:nothing

push edi

push esi

; Grab the current thread pointer

xor ecx, ecx

inc ch

mov esi, fs:[ecx+24h]

; Grab KTHREAD.InitialStack

lea esi, [esi+18h]

lodsd

xchg esi, edi

; Find StackBase

repne scasd

; Set KTHREAD->SuspendApc.NormalRoutine

mov eax, [esp+0ch]

xchg eax, [edi+1ch]

pop esi

pop edi

ret

_RkSetSuspendApcNormalRoutine@4 endp

15

Category: Type IIa

Origin: The authors believe this to be the first pub-
lic description of this technique. Skywing is credited
with the idea. Greg Hoglund mentions abusing APC
queues to execute code, but he does not explicitly call
out SuspendApc[18].

Capabilities: Kernel-mode code execution.

Considerations: This technique is extremely effec-
tive. It provides a simple way of executing arbitrary
code in kernel-mode by simply hijacking the mecha-
nism used to suspend a specific thread. There are also
some interesting side effects that are worth mention-
ing. Overwriting the SuspendApc’s NormalRoutine
makes it so that the thread can no longer be sus-
pended. Even better, if the hook function that
replaces the NormalRoutine never returns, it be-
comes impossible for the thread, and thus the own-
ing process, to be killed because of the fact that the
NormalRoutine is invoked at APC level. Both of
these side effects are valuable in the context of a
rootkit.

One consideration that must be made from the per-
spective of a backdoor is that it will be neces-
sary to devise a technique that can be used to lo-
cate the SuspendApc field in the KTHREAD structure
across multiple versions of Windows. Fortunately,
there are heuristics that can be used to accomplish
this. In all versions of Windows analyzed thus far,
the SuspendApc field is preceded by the StackBase
field. It has been confirmed on multiple operating
systems that the StackBase field is equal to the
InitialStack field. The InitialStack field is lo-
cated at a reliable offset (0x18) on all versions of
Windows checked by the authors. Using this knowl-
edge, it is trivial to write some code that scans the
KTHREAD structure on pointer aligned offsets until it
encounters a value that is equal to the InitialStack.
Once a match is found, it is possible to assume that
the SuspendApc immediately follows it.

Covertness: This technique involves overwriting a
function pointer in a dynamically allocated region
of memory that is associated with a specific thread.

This makes the technique fairly covert, but not im-
possible to detect. One method of detecting this tech-
nique would be to enumerate the threads in each pro-
cess to see if the NormalRoutine of the SuspendApc
is set to the expected value of nt!KiSuspendThread.
It would be challenging for someone other than Mi-
crosoft to implement this safely. The authors are not
aware of any tool that currently does this.

2.5.4 Create Thread Notify Routine

The Windows kernel provides drivers with
the ability to register a callback that will be
notified when threads are created and ter-
minated. This ability is provided through
the Windows Driver Model (WDM) export
nt!PsSetCreateThreadNotifyRoutine. When
a thread is created or terminated, the kernel enu-
merates the list of registered callbacks and notifies
them of the event.

Category: Type II

Origin: The ability to register a callback that is no-
tified when threads are created and terminated has
been included since the first release of the WDM.

Capabilities: Kernel-mode code execution.

Considerations: This technique is useful because a
user-mode process can control the invocation of the
callback by simply creating or terminating a thread.
Additionally, the callback will be notified in the con-
text of the process that is creating or terminating
the thread. This makes it possible to set the callback
routine to an address that resides within ntdll.dll.

Covertness: This technique is covert in that it is
possible for a backdoor to blend in with any other
registered callbacks. Without having a known-good
state to compare against, it would be challenging to
conclusively state that a registered callback is associ-
ated with a backdoor. There are some indicators that
could be used that something is odd, such as if the
callback routine resides in ntdll.dll or if it resides
in either the paged or non-paged pool.

16

2.5.5 Object Type Initializers

The Windows NT kernel uses an object-oriented ap-
proach to representing resources such as files, drivers,
devices, processes, threads, and so on. Each ob-
ject is categorized by an object type. This object
type categorization provides a way for the kernel to
support common actions that should be applied to
objects of the same type, among other things. Un-
der this design, each object is associated with only
one object type. For example, process objects are
associated with the nt!PsProcessType object type.
The structure used to represent an object type is the
OBJECT TYPE structure which contains a nested struc-
ture named OBJECT TYPE INITIALIZER. It’s this sec-
ond structure that provides some particularly inter-
esting fields that can be used in a backdoor.

As one might expect, the fields of most interest are
function pointers. These function pointers, if non-
null, are called by the kernel at certain points during
the lifetime of an object that is associated with a par-
ticular object type. The following debugger output
shows the function pointer fields:

kd> dt nt!_OBJECT_TYPE_INITIALIZER

...

+0x02c DumpProcedure : Ptr32

+0x030 OpenProcedure : Ptr32

+0x034 CloseProcedure : Ptr32

+0x038 DeleteProcedure : Ptr32

+0x03c ParseProcedure : Ptr32

+0x040 SecurityProcedure : Ptr32

+0x044 QueryNameProcedure : Ptr32

+0x048 OkayToCloseProcedure : Ptr32

Two fairly easy to understand procedures are
OpenProcedure and CloseProcedure. These func-
tion pointers are called when an object of a given
type is opened and closed, respectively. This gives
the object type initializer a chance to perform some
common operation on an instance of an object type.
In the case of a backdoor, this exposes a mechanism
through which arbitrary code could be executed in
kernel-mode whenever an object of a given type is
opened or closed.

Category: Type IIa

Origin: Matt Conover gave an excellent presentation
on how object type initializers can be used to detect
rootkits at XCon 2005[8]. Conversely, they can also
be used to backdoor the system. The authors are
not aware of public examples prior to Conover’s pre-
sentation. Greg Hoglund also mentions this type of
approach[18] in June, 2006.

Capabilities: Kernel-mode code execution.

Considerations: There are no unique considera-
tions involved in the use of this technique.

Covertness: This technique can be detected by tools
designed to validate the state of object type initial-
izers against a known-good state. Currently, the au-
thors are not aware of any tools that perform this
type of check.

2.5.6 PsInvertedFunctionTable

With the introduction of Windows for x64, significant
changes were made to how exceptions are processed
with respect to how exceptions operate in x86 ver-
sions of Windows. On x86 versions of Windows, ex-
ception handlers were essentially demand-registered
at runtime by routines with exception handlers (more
of a code-based exception registration mechanism).
On x64 versions of Windows, the exception registra-
tion path is accomplished using a more data-driven
model. Specifically, exception handling (and espe-
cially unwind handling) is now driven by metadata
attached to each PE image (known as the “exception
directory”), which describes the relationship between
routines and their exception handlers, what the ex-
ception handler function pointer(s) for each region
of a routine are, and how to unwind each routine’s
machine state in a completely data-driven fashion.

While there are significant advantages to having ex-
ception and unwind dispatching accomplished using a
data-driven model, there is a potential performance
penalty over the x86 method (which consisted of a
linked list of exception and unwind handlers regis-
tered at a known location, on a per-thread basis). A
specific example of this can be seen when noting that

17

all of the information needed for the operating system
to locate and call the exception handler for purposes
of exception or unwind processing was in one location
(the linked list in the NT TIB) on Windows for x86 is
now scattered across all loaded modules in Windows
for x64. In order to locate an exception handler for a
particular routine, it is necessary to search the loaded
module list for the module that contains the instruc-
tion pointer corresponding to the function in ques-
tion. After the module is located, it is then neces-
sary to process the PE header of the module to locate
the module’s exception directory. Finally, it is then
necessary to search the exception directory of that
module for the metadata corresponding to a location
encompassing the requested instruction pointer. This
process must be repeated for every function for which
an exception may traverse.

In an effort to improve the performance of exception
dispatching on Windows for x64, Microsoft developed
a multi-tier cache system that speeds the resolution
of exception dispatching information that is used
by the routine responsible for looking up metadata
associated with a function. The routine responsible
for this is named RtlLookupFunctionTable. When
searching for unwind information (a pointer to a
RUNTIME FUNCTION entry structure), depending on
the reason for the search request, an internal first-
level cache (RtlpUnwindHistoryTable) of unwind
information for commonly occurring functions may
be searched. At the time of this writing, this table
consists of RtlUnwindex, C specific handler,
RtlpExecuteHandlerForException,
RtlDispatchException, RtlRaiseStatus,
KiDispatchException, and
KiExceptionDispatch. Due to how exception
dispatching operates on x64 [39], many of these func-
tions will commonly appear in any exception call
stack. Because of this it is beneficial to performance
to have a first-level, quick reference for them.

After RtlpUnwindHistoryTable is searched, a sec-
ond cache, known as PsInvertedFunctionTable
(in kernel-mode) or LdrpInvertedFunctionTable
(in user-mode) is scanned. This second-level
cache contains a list of the first 0x200 (Windows

Server 2008, Windows Vista) or 0xA0 (Windows
Server 2003) loaded modules. The loaded mod-
ule list contained within PsInvertedFunctionTable
/ LdrpInvertedFunctionTable is presented as a
quickly searchable, unsorted linear array that maps
the memory occupied by an entire loaded image to
a given module’s exception directory. The lookup
through the inverted function table thus eliminates
the costly linked list (loaded module list) and ex-
ecutable header parsing steps necessary to locate
the exception directory for a module. For modules
which are referenced by PsInvertedFunctionTable
/ LdrpInvertedFunctionTable, the exception direc-
tory pointer and size information in the PE header of
the module in question are unused after the module is
loaded and the inverted function table is populated.
Because the inverted function table has a fixed size, if
enough modules are loaded simultaneously, it is pos-
sible that after a point some modules may need to be
scanned via loaded module list lookup if all entries in
the inverted function table are in use when that mod-
ule is loaded. However, this is a rare occurrence, and
most of the interesting system modules (such as HAL
and the kernel memory image itself) are at a fixed-at-
boot position within PsInvertedFunctionTable[37].

By redirecting the exception directory pointer in
PsInvertedFunctionTable to refer to a “shadow”
exception directory in caller-supplied memory (out-
side of the PE header of the actual module), it is pos-
sible to change the exception (or unwind) handling
behavior of all code points within a module. For in-
stance, it is possible to create an exception handler
spanning every code byte within a module through
manipulation of the exception directory information.
By changing the inverted function table cache for a
module, multiple benefits are realized with respect to
this goal. First, an arbitrarily large amount of space
may be devoted to unwind metadata, as the patched
unwind metadata need not fit within the confines of
a particular image’s exception directory (this is par-
ticular important if one wishes to “gift” all functions
within a module with an exception handler). Sec-
ond, the memory image of the module in question
need not be modified, improving the resiliency of the
technique against naive detection systems.

18

Category: Type IIa, varies. Although the entries
for always-loaded modules such as the HAL and the
kernel in-memory image itself are essentially consid-
ered write-once, the array as a whole may be modified
as the system is running when kernel modules are ei-
ther loaded or unloaded. As a result, while the first
few entries of PsInvertedFunctionTable are com-
paratively easy to verify, the “dynamic” entries cor-
responding to demand-loaded (and possibly demand-
unloaded) kernel modules may frequently change dur-
ing the legitimate operation of the system, and as
such interception of the exception directory pointers
of individual drivers may be much less simple to de-
tect than the interception of the kernel’s exception
directory.

Origin: At the time of this writing, the au-
thors are not aware of existing malware us-
ing PsInvertedFunctionTable. Hijacking of
PsInvertedFunctionTable was proposed as a pos-
sible bypass avenue for PatchGuard version 2 by
Skywing[37]. Its applicability as a possible attack
vector with respect to hiding kernel mode code was
also briefly described in the same article.

Capabilities: The principal capability afforded by
this technique is to establish an exception handler
at arbitrary locations within a target module (even
every code byte within a module if so desired). By
virtue of creating such exception handlers, it is pos-
sible to gain control at any location within a module
that may be traversed by an exception, even if the ex-
ception would normally be handled in a safe fashion
by the module or a caller of the module.

Considerations: As PsInvertedFunctionTable is
not exported, one must first locate it in order to patch
it (this is considered possible as many exported rou-
tines reference it in an obvious, patterned way, such
as RtlLookupFunctionEntry. Also, although the
structure is guarded by a non-exported synchroniza-
tion mechanism (PsLoadedModuleSpinLock in Win-
dows Server 2008), the first few entries corresponding
to the HAL and the kernel in-memory image itself
should be static and safely accessible without syn-
chronization (after all, neither the HAL nor the ker-
nel in-memory image may be unloaded after the sys-

tem has booted). It should be possible to perform
an interlocked exchange to swap the exception direc-
tory pointer, provided that the exception directory
shall not be modified in a fashion that would require
synchronization (e.g. only appended to) after the ex-
change is made. The size of the exception directory is
supplied as a separate value in the inverted function
table entry array and would need to be modified sep-
arately, which may pose a synchronization problem
if alterations to the exception directory are not care-
fully planned to be safe in all possible contingencies
with respect to concurrent access as the alterations
are made. Additionally, due to the 32-bit RVA based
format of the unwind metadata, all exception han-
dlers for a module must be within 4GB of that mod-
ule’s loaded base address. This means that custom
exception handlers need to be located within a “win-
dow” of memory that is relatively near to a module.
Allocating memory at a specific base address involves
additional work as the memory cannot be in an arbi-
trary point in the address space, but within 4GB of
the target. If a caller can query the address space and
request allocations based at a particular region, how-
ever, this is not seen as a particular unsurmountable
problem.

Covertness: The principal advantage of this ap-
proach is that it allows a caller to gain control at any
point within a module’s execution where an excep-
tion is generated without modifying any code or data
within the module in question (provided the mod-
ule is cached within PsInvertedFunctionTable).
Because the exception directory information for a
module is unused after the cache is populated,
integrity checks against the PE header are use-
less for detecting the alteration of exception han-
dling behavior for a cached module. Addition-
ally, PsInvertedFunctionTable is a non-exported,
writable kernel-mode global which affords it some
intrinsic protection against simple detection tech-
niques. A scan of the loaded module list and com-
parison of exception directory pointers to those con-
tained within PsInvertedFunctionTable could re-
veal most attacks of this nature, however, provided
that the loaded module list retains integrity. Ad-
ditionally, PatchGuard version 3 appears to guard

19

key portions of PsInvertedFunctionTable (e.g. to
block redirection of the kernel’s exception directory),
resulting in a need to bypass PatchGuard for long-
term exploitation on Windows x64 based systems.
This is considered a relatively minor difficulty by the
authors.

2.5.7 Delayed Procedures

There are a number of features offered by the
Windows kernel that allow device drivers to asyn-
chronously execute code. Some examples of these fea-
tures include asynchronous procedure calls (APCs),
deferred procedure calls (DPCs), work items, thread-
ing, and so on. A backdoor can simply make use
of the APIs exposed by the kernel to make use of
any number of these to schedule a task that will
run arbitrary code in kernel-mode. For example, a
backdoor might queue a kernel-mode APC using the
ntdll.dll trick described at the beginning of this
section. When the APC executes, it runs code that
has been altered in ntdll.dll in a kernel-mode con-
text. This same basic concept would work for all
other delayed procedures.

Category: Type II

Origin: This technique makes implicit use of op-
erating system exposed features and therefore falls
into the category of obvious. Greg Hoglund mentions
these in particular in June, 2006[18].

Capabilities: Kernel-mode code execution.

Considerations: The important consideration here
is that some of the methods that support running
delayed procedures have restrictions about where the
code pages reside. For example, a DPC is invoked at
dispatch level and must therefore execute code that
resides in non-paged memory.

Covertness: This technique is covert in the sense
that the backdoor is always in a transient state of
execution and therefore could be considered largely
dormant. Since the backdoor state is stored alongside
other transient state in the operating system, this

technique should prove more difficult to detect when
compared to some of the other approaches described
in this paper.

2.6 Asynchronous Read Loop

It’s not always necessary to hook some portion of the
kernel when attempting to implement a local kernel-
mode backdoor. In some cases, it’s easiest to just
make use of features included in the target operat-
ing system to blend in with normal behavior. One
particularly good candidate for this involves abusing
some of the features offered by Window’s I/O (in-
put/output) manager.

The I/O model used by Windows has many facets to
it. For the purposes of this paper, it’s only necessary
to have an understanding of how it operates when
reading data from a file. To support this, the ker-
nel constructs an I/O Request Packet (IRP) with its
MajorFunction set to IRP MJ READ. The kernel then
passes the populated IRP down to the device object
that is related to the file that is being read from. The
target device object takes the steps needed to read
data from the underlying device and then stores the
acquired data in a buffer associated with the IRP.
Once the read operation has completed, the kernel
will call the IRP’s completion routine if one has been
set. This gives the original caller an opportunity to
make forward progress with the data that has been
read.

This very basic behavior can be effectively harnessed
in the context of a backdoor in a fairly covert fash-
ion. One interesting approach involves a user-mode
process hosting a named pipe server and a blob of
kernel-mode code reading data from the server and
then executing it in the kernel-mode context. This
general behavior would make it possible to run ad-
ditional code in the kernel-mode context by simply
shuttling it across a named pipe. The specifics of
how this can be made to work are almost as simple
as the steps described in the previous paragraph.

The user-mode part is simple; create a named pipe

20

server using CreateNamedPipe and then wait for a
connection. The kernel-mode part is more interest-
ing. One basic idea might involve having a kernel-
mode routine that builds an asynchronous read IRP
where the IRP’s completion routine is defined as the
kernel-mode routine itself. In this way, when data
arrives from the user-mode process, the routine is no-
tified and given an opportunity to execute the code
that was supplied. After the code has been executed,
it can simply re-use the code that was needed to pass
the IRP to the underlying device associated with the
named pipe that it’s interacting with. The follow-
ing pseudo-code illustrates how this could be accom-
plished:

KernelRoutine(DeviceObject, ReadIrp, Context)

{

// First time called, ReadIrp == NULL

if (ReadIrp == NULL)

{

FileObject = OpenNamedPipe(...)

}

// Otherwise, called during IRP completion

else

{

FileObject = GetFileObjectFromIrp(ReadIrp)

RunCodeFromIrpBuffer(ReadIrp)

}

DeviceObject = IoGetRelatedDeviceObject(FileObject)

ReadIrp = IoBuildAsynchronousFsdRequest(...)

IoSetCompletionRoutine(ReadIrp, KernelRoutine)

IoCallDriver(DeviceObject, ReadIrp)

}

Category: Type II

Origin: The authors believe this to be the first public
description of this technique.

Capabilities: Kernel-mode code execution.

Covertness: The authors believe this technique to
be fairly covert due to the fact that the kernel-mode
code profile is extremely minimal. The only code
that must be present at all times is the code needed
to execute the read buffer and then post the next
read IRP to the target device object. There are two
main strategies that might be taken to detect this
technique. The first could include identifying mali-

cious instances of the target device, such as a mali-
cious named pipe server. The second might involve
attempting to perform an in-memory fingerprint of
the completion routine code, though this would be
far from fool proof, especially if the kernel-mode code
is encoded until invoked.

2.7 Leaking CS

With the introduction of protected mode into the x86
architecture, the concept of separate privilege levels,
or rings, was born. Lesser privileged rings (such as
ring 3) were designed to be restricted from accessing
resources associated with more privileged rings (such
as ring 0). To support this concept, segment descrip-
tors are able to define access restrictions based on
which rings should be allowed to access a given re-
gion of memory. The processor derives the Current
Privilege Level (CPL) by looking at the low order two
bits of the CS segment selector when it is loaded. If
all bits are cleared, the processor is running at ring
0, the most privileged ring. If all bits are set, then
processor is running at ring 3, the least privileged
ring.

When certain events occur that require the operating
system’s kernel to take control, such as an interrupt,
the processor automatically transitions from what-
ever ring it is currently executing at to ring 0 so that
the request may be serviced by the kernel. As part of
this transition, the processor saves the value of the a
number of different registers, including the previous
value of CS, to the stack in order to make it possible
to pick up execution where it left off after the request
has been serviced. The following structure describes
the order in which these registers are saved on the
stack:

typedef struct _SAVED_STATE

{

ULONG_PTR Eip;

ULONG_PTR CodeSelector;

ULONG Eflags;

ULONG_PTR Esp;

ULONG_PTR StackSelector;

} SAVED_STATE, *PSAVED_STATE

21

Potential security implications may arise if there is a
condition where some code can alter the saved execu-
tion state in such a way that the saved CS is modified
from a lesser privileged CS to a more privileged CS
by clearing the low order bits. When the saved ex-
ecution state is used to restore the active processor
state, such as through an iret, the original caller
immediately obtains ring 0 privileges.

Category: Undefined; this approach does not fit into
any of the defined categories as it simply takes advan-
tage of hardware behavior relating around how CS is
used to determine the CPL of a processor. If code
patching is used to be able to modify the saved CS,
then the implementation is Type I.

Origin: Leaking CS to user-mode has been known
to be dangerous since the introduction of protected
mode (and thus rings) into the x86 architecture with
the 80286 in 1982[22]. This approach therefore falls
into the category of obvious due to the documented
hardware implications of leaking a kernel-mode CS
when transitioning back to user-mode.

Capabilities: Kernel-mode code execution.

Considerations: Leaking the kernel-mode CS to
user-mode may have undesired consequences. What-
ever code is to be called in user-mode must take into
account that it will be running in a kernel-mode con-
text. Furthermore, the kernel attempts to be as rigor-
ous as possible about checking to ensure that a thread
executing in user-mode is not allowed a kernel-mode
CS.

Covertness: Depending on the method used to
intercept and alter the saved execution state, this
method has the potential to be fairly covert. If the
method involves secondary hooking in order to mod-
ify the state, then it may be detected through some
of the same techniques as described in the section on
image patching.

3 Prevention & Mitigation

The primary purpose of this paper is not to explicitly
identify approaches that could be taken to prevent
or mitigate the different types of attacks described
herein. However, it is worth taking some time to
describe the virtues of certain approaches that could
be extremely beneficial if one were to attempt to do
so. The subject of preventing backdoors from being
installed and persisted is discussed in more detail in
section 4 and therefore won’t be considered in this
section.

One of the more interesting ideas that could be ap-
plied to prevent a number of different types of back-
doors would be immutable memory. Memory is im-
mutable when it is not allowed to be modified. There
are a few key regions of memory used by the Windows
kernel that would benefit greatly from immutable
memory, such as executable code segments and re-
gions that are effectively write-once, such as the
SSDT. While immutable memory way work in prin-
ciple, there is currently no x86 or x64 hardware (that
the authors are aware of) that permits this level of
control.

Even though there appears to be no hardware sup-
port for this, it is still possible to implement im-
mutable memory in a virtualized environment. This
is especially true in hardware-assisted virtualization
implementations that make use of a hypervisor in
some form. In this model, a hypervisor can easily ex-
pose a hypercall (similar to a system call, but traps
into the hypervisor) that would allow an enlightened
guest to mark a set of pages as being immutable.
From that point forward, the hypervisor would re-
strict all writes to the pages associated with the im-
mutable region.

As mentioned previously, particularly good candi-
dates for immutable memory are things like the
SSDT, Window’s ALMOSTRO write-once segment, as
well as other single-modification data elements that
exist within the kernel. Enforcing immutable mem-
ory on these regions would effectively prevent back-
doors from being able to establish certain types of

22

hooks. The downside to it would be that the kernel
would lose the ability to hot-patch itself9. Still, the
security upside would seem to out-weigh the poten-
tial downside. On x64, the use of immutable memory
would improve the resilience of PatchGuard by allow-
ing it to actively prevent hot-patching rather than
relying on detecting it with the use of a polling cycle.

4 Running Code in Kernel-
Mode

There are many who might argue that it’s not even
necessary to write code that prevents or detects spe-
cific types of kernel-mode backdoors. This argument
can be made on the grounds of two very specific
points. The first point is that in order for one to
backdoor the kernel, one must have some way of exe-
cuting code in kernel-mode. Based on this line of rea-
soning, one might argue that the focus should instead
be given to preventing untrusted code from running
in kernel-mode. The second point in this argument
is that in order for one to truly compromise the host,
some form of data must be persisted. If this is as-
sumed to be the case, then an obvious solution would
be to identify ways of preventing or detecting the
persistent data. While there may also be additional
points, these two represent the common themes ob-
served by the authors. Unfortunately, the fact is that
both of these points are, at the time of this writing,
flawed.

It is currently not possible with present day operat-
ing systems and x86/x64 hardware to guarantee that
only specific code will run in the context of an op-
erating system’s kernel. Though Microsoft wishes it
were possible, which is clearly illustrated by their ef-
forts in Code Integrity and Trusted Boot, there is no
real way to guarantee that kernel-mode code cannot
be exploited in a manner that might lead to code
execution[2]. There have been no shortage of Win-
dows kernel-mode vulnerabilities to illustrate the fea-

9There are some instances where kernel-mode hot-patching
is currently require, especially on x64

sibility of this type of vector[6, 10]. This matter is
also not helped by the fact that the Windows ker-
nel currently has very few exploit mitigations. This
makes the exploitation of kernel vulnerabilities triv-
ial in comparison to some of the mitigations found in
user-mode on Windows XP SP2 and, more recently,
Windows Vista.

In addition to the exploitation vector, it is also impor-
tant to consider alternative ways of executing code
in kernel-mode that would be largely invisible to the
kernel itself. John Heasman has provided some ex-
cellent research into the subject of using the BIOS,
expansion ROMs, and the Extensible Firmware Inter-
face (EFI) as a means of running arbitrary code in the
context of the kernel without necessarily relying on
any hooks directly visible to the kernel itself[16, 17].
Loc Duflot described how to use the System Manage-
ment Mode (SMM) of Intel processors as a method
of subverting the operating system to bypass BSD’s
securelevel restrictions[9]. There has also been a
lot discussion around using DMA to directly interact
with and modify physical memory without involving
the operating system. However, this form of attack
is of less concern due to the fact that physical access
is required.

The idea of detecting or preventing a rootkit from
persisting data is something that is worthy of
thoughtful consideration. Indeed, it’s true that in
order for malware to survive across reboots, it must
persist itself in some form or another. By preventing
or detecting this persisted data, it would be possible
to effectively prevent any form of sustained infection.
On the surface, this idea is seemingly both simple
and elegant, but the devil is in the details. The fact
that this idea is fundamentally flawed can be plainly
illustrated using the current state of Anti-Virus tech-
nology.

For the sake of argument, assume for the moment
that there really is a way to deterministically prevent
malware from persisting itself in any form. Now, con-
sider a scenario where a web server at financial insti-
tution is compromised and a memory resident rootkit
is used. The point here should be obvious: no data
associated with the rootkit touches the physical hard-

23

ware. In this example, one might rightly think that
the web server will not be rebooted for an extended
period of time. In these circumstances, there is really
no difference between a persistent and non-persistent
rootkit. Indeed, a memory resident rootkit may not
be ideal in certain situations, but it’s important to
understand the implications.

Based on the current state-of-the-art, it is not possi-
ble to deterministically prevent malware from persist-
ing itself. There are far too many methods of persist-
ing data. This is further illustrated by John Heasman
in his ACPI and expansion ROM work. To the au-
thors’ knowledge, modern tools focus their forensic
analysis on the operating system and on file systems.
This isn’t sufficient, however, as rootkit data can be
stored in locations that are largely invisible to the
operating system. While this may be true, there has
been a significant push in recent years to provide the
hardware necessary to implement a trusted system
boot. This initiative is being driven by the Trusted
Computing Group with involvement from companies
such as Microsoft and Intel[42]. One of the major out-
comes of this group has been the Trusted Platform
Module (TPM) which strives to facilitate a trusted
system boot, among other things[43]. At the time of
this writing, the effectiveness of TPM is largely un-
known, but it is expected that it will be a powerful
and useful security feature as it matures.

The fact that there is really no way of preventing un-
trusted code from running in kernel-mode in combi-
nation with the fact that there is really no way to uni-
versally prevent untrusted code from persisting itself
helps to illustrate the need for thoughtful considera-
tion of ways to both prevent and detect kernel-mode
backdoors.

5 PatchGuard versus Rootkits

There has been some confusion centering around
whether or not PatchGuard can be viewed as a de-
terrent to rootkits. On the surface, it would appear
that PatchGuard does indeed represent a formidable

opponent to rootkit developers given the fact that it
checks for many different types of hooks. Beneath the
surface, it’s clear that PatchGuard is fundamentally
flawed with respect to its use as a rootkit deterrent.
This flaw centers around the fact that PatchGuard, in
its current implementation, runs at the same privilege
level as other driver code. This opens PatchGuard
up to attacks that are designed to prevent it from
completing its checks. The authors have previously
outlined many different approaches that can be used
to disable PatchGuard[36, 37]. It is certainly pos-
sible that Microsoft could implement fixes for these
attacks, and indeed they have implemented some in
more recent versions, but the problem remains a cat-
and-mouse game. In this particular cat-and-mouse
game, rootkit authors will always have an advantage
both in terms of time and in terms of vantage point.

In the future, PatchGuard can be improved to lever-
age features of a hypervisor in a virtualized environ-
ment that might allow it to be protected from mali-
cious code running in the context of a guest. For ex-
ample, the current version of PatchGuard currently
makes extensive use of obfuscation in order to pre-
sumably prevent malware from finding its code and
context structures in memory. The presence of a hy-
pervisor may permit PatchGuard to make more ex-
tensive use of immutable memory, or to alternatively
run at a privilege level that is greater than that of an
executing guest, such as within the hypervisor itself
(though this could have severe security implications
if done improperly).

Even if PatchGuard is improved to the point where
it’s no longer possible to disable its security checks,
there will still be another fundamental flaw. This sec-
ond flaw centers around the fact that PatchGuard,
like any other code designed to perform explicit
checks, is like a horse with blinders on. It’s only
able to detect modifications to the specific struc-
tures that it knows about. While it may be true
that these structures are the most likely candidates
to be hooked, it is nevertheless true that many other
structures exist that would make suitable candidates,
such as the SuspendApc of a specific thread. These
alternative candidates are meant to illustrate the

24

challenges PatchGuard faces with regard to contin-
ually evolving its checks to keep up with rootkit au-
thors. In this manner, PatchGuard will continue to
be forced into a reactive mode rather than a proactive
mode. If IDS products have illustrated one thing it’s
that reactive security solutions are largely inadequate
in the face of a skilled attacker.

PatchGuard is most likely best regarded as a hall
monitor. Its job is to make sure students are doing
things according to the rules. Good students, such
as ISVs, will inherently bend to the will of Patch-
Guard lest they find themselves in unsupported wa-
ters. Bad students, such as rootkits, fear not the
wrath of PatchGuard and will have few qualms about
sidestepping it, even if the technique used to sidestep
may not work in the future.

6 Acknowledgements

The authors would like to acknowledge all of the peo-
ple, named or unnamed, whose prior research con-
tributed to the content included in this paper.

7 Conclusion

At this point it should be clear that there is no short-
age of techniques that can be used to expose a lo-
cal kernel-mode backdoor on Windows. These tech-
niques provide a subtle way of weakening the secu-
rity guarantees of the Windows kernel by exposing
restricted resources to user-mode processes. These
resources might include access to kernel-mode data,
disabling of security checks, or the execution of arbi-
trary code in kernel-mode. There are many different
reasons why these types of backdoors would be useful
in the context of a rootkit.

The most obvious reason these techniques are use-
ful in rootkits is for the very reason that they pro-
vide access to restricted resource. A less obvious rea-
son for their usefulness is that they can be used as

a method of reducing a rootkit’s kernel-mode code
profile. Since many tools are designed to scan kernel-
mode memory for the presence of backdoors[32, 14],
any reduction of a rootkit’s kernel-mode code profile
can be useful. Rather than placing code in kernel-
mode, techniques have been described for redirect-
ing code execution to code stored in user-mode in
a process-specific fashion. This is accomplished by
redirecting code into a portion of the ntdll mapping
which exists in every process, including the System
process.

Understanding how different backdoor techniques
work is necessary in order to consider approaches that
might be taken to prevent or detect rootkits that em-
ploy them. For example, the presence of immutable
memory may eliminate some of the common tech-
niques used by many different types of rootkits. Like-
wise, when these techniques are eliminated, new ones
will be developed, continuing the cycle that perme-
ates most adversarial systems.

References

[1] AMD. AMD64 Architecture Programmer’s Man-
ual Volume 2: System Programming. Dec, 2005.

[2] Anonymous Hacker. Xbox 360 Hypervisor
Privilege Escalation Vulnerability. Bugtraq.
Feb, 2007. http://www.securityfocus.com/
archive/1/461489

[3] Blanset, David et al. Dual operating sys-
tem computer. Oct, 1985. http://www.
freepatentsonline.com/4747040.html

[4] Brown, Ralf. Pentium Model-Specific Reg-
isters and What They Reveal. Oct, 1995.
http://www.rcollins.org/articles/p5msr/
PentiumMSRs.html

[5] Butler, James and Sherri Sparks. Windows
Rootkits of 2005. Nov, 2005. http://www.
securityfocus.com/infocus/1850

[6] Cerrudo, Cesar. Microsoft Windows Kernel
GDI Local Privilege Escalation. Oct, 2004.

25

http://www.securityfocus.com/archive/1/461489
http://www.securityfocus.com/archive/1/461489
http://www.freepatentsonline.com/4747040.html
http://www.freepatentsonline.com/4747040.html
http://www.rcollins.org/articles/p5msr/PentiumMSRs.html
http://www.rcollins.org/articles/p5msr/PentiumMSRs.html
http://www.securityfocus.com/infocus/1850
http://www.securityfocus.com/infocus/1850

http://projects.info-pull.com/mokb/
MOKB-06-11-2006.html

[7] CIAC. E-34: One half Virus (MS-DOS). Sep,
1994. http://www.ciac.org/ciac/bulletins/
e-34.shtml

[8] Conover, Matt. Malware Profiling and
Rootkit Detection on Windows. 2005.
http://xcon.xfocus.org/xcon2005/
archives/2005/Xcon2005 Shok.pdf

[9] Duflot, Loc. Security Issues Related to Pen-
tium System Management Mode. CanSecWest,
2006. http://www.cansecwest.com/slides06/
csw06-duflot.ppt

[10] Ellch, John et al. Exploiting 802.11 Wireless
Driver Vulnerabilities on Windows. Jan, 2007.
http://www.uninformed.org/?v=6&a=2&t=
sumry

[11] Firew0rker, the nobodies. Kernel-mode back-
doors for Windows NT. Phrack 62. Jan,
2005. http://www.phrack.org/issues.html?
issue=62&id=6#article

[12] fuzen op. SysEnterHook. Feb, 2005.
http://www.rootkit.com/vault/fuzen op/
SysEnterHook.zip

[13] Garfinkel, Tal. Traps and Pitfalls: Practical
Problems in System Call Interposition Based
Security Tools. http://www.stanford.edu/
∼talg/papers/traps/traps-ndss03.pdf

[14] Gassoway, Paul. Discovery of kernel rootkits
with memory scan. Oct, 2005. http://www.
freepatentsonline.com/20070078915.html

[15] Gulbrandsen, John. System Call Optimization
with the SYSENTER Instruction. Oct, 2004.
http://www.codeguru.com/Cpp/W-P/system/
devicedriverdevelopment/article.php/
c8223/

[16] Heasman, John. Implementing and Detecting an
ACPI BIOS Rootkit. BlackHat Federal, 2006.
https://www.blackhat.com/presentations/
bh-federal-06/BH-Fed-06-Heasman.pdf

[17] Heasman, John. Implementing and De-
tecting a PCI Rootkit. Nov, 2006. http:
//www.ngssoftware.com/research/papers/
Implementing And Detecting A PCI Rootkit.
pdf

[18] Hoglund, Greg. Kernel Object Hooking Rootk-
its (KOH Rootkits). Jun, 2006. http://www.
rootkit.com/newsread.php?newsid=501

[19] Hoglund, Greg. A *REAL* NT Rootkit, patching
the NT Kernel. Phrack 55. Sep, 1999. http:
//phrack.org/issues.html?issue=55&id=5

[20] Hoglund, Greg and James Butler. Rootkits: Sub-
verting the Windows Kernel. 2006. Addison-
Wesley.

[21] Hunt, Galen and Doug Brubacher. Detours: Bi-
nary Interception of Win32 Functions. Proceed-
ings of the 3rd USENIX Windows NT Sym-
posium, pp. 135-143. Seattle, WA, July 1999.
USENIX.

[22] Intel. 2.1.2 The Intel 286 Processor (1982).
Intel 64 and IA-32 Architectures Software
Developer’s Manual. Denver, Colorado: In-
tel, 34. http://www.intel.com/products/
processor/manuals/index.htm.

[23] Intel. IA-32 Intel Architecture Software Devel-
oper’s Manual Volume 3: System Programming
Guide. Sep, 2005.

[24] Jack, Barnaby. Remote Windows Kernel Ex-
ploitation: Step into the Ring 0. Aug, 2005.
http://www.blackhat.com/presentations/
bh-usa-05/BH US 05-Jack White Paper.pdf

[25] Kasslin, Kimmo. Kernel Malware: The
Attack from Within. 2006. http:
//www.f-secure.com/weblog/archives/
kasslin AVAR2006 KernelMalware paper.pdf

[26] Kdm. NTIllusion: A portable Win32 user-
land rootkit [incomplete]. Phrack 62. Jan,
2005. http://www.phrack.org/issues.html?
issue=62&id=12&mode=txt

26

http://projects.info-pull.com/mokb/MOKB-06-11-2006.html
http://projects.info-pull.com/mokb/MOKB-06-11-2006.html
http://www.ciac.org/ciac/bulletins/e-34.shtml
http://www.ciac.org/ciac/bulletins/e-34.shtml
http://xcon.xfocus.org/xcon2005/archives/2005/Xcon2005_Shok.pdf
http://xcon.xfocus.org/xcon2005/archives/2005/Xcon2005_Shok.pdf
http://www.cansecwest.com/slides06/csw06-duflot.ppt
http://www.cansecwest.com/slides06/csw06-duflot.ppt
http://www.uninformed.org/?v=6&a=2&t=sumry
http://www.uninformed.org/?v=6&a=2&t=sumry
http://www.phrack.org/issues.html?issue=62&id=6#article
http://www.phrack.org/issues.html?issue=62&id=6#article
http://www.rootkit.com/vault/fuzen_op/SysEnterHook.zip
http://www.rootkit.com/vault/fuzen_op/SysEnterHook.zip
http://www.stanford.edu/~talg/papers/traps/traps-ndss03.pdf
http://www.stanford.edu/~talg/papers/traps/traps-ndss03.pdf
http://www.freepatentsonline.com/20070078915.html
http://www.freepatentsonline.com/20070078915.html
http://www.codeguru.com/Cpp/W-P/system/devicedriverdevelopment/article.php/c8223/
http://www.codeguru.com/Cpp/W-P/system/devicedriverdevelopment/article.php/c8223/
http://www.codeguru.com/Cpp/W-P/system/devicedriverdevelopment/article.php/c8223/
https://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Heasman.pdf
https://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Heasman.pdf
http://www.ngssoftware.com/research/papers/Implementing_And_Detecting_A_PCI_Rootkit.pdf
http://www.ngssoftware.com/research/papers/Implementing_And_Detecting_A_PCI_Rootkit.pdf
http://www.ngssoftware.com/research/papers/Implementing_And_Detecting_A_PCI_Rootkit.pdf
http://www.ngssoftware.com/research/papers/Implementing_And_Detecting_A_PCI_Rootkit.pdf
http://www.rootkit.com/newsread.php?newsid=501
http://www.rootkit.com/newsread.php?newsid=501
http://phrack.org/issues.html?issue=55&id=5
http://phrack.org/issues.html?issue=55&id=5
http://www.intel.com/products/processor/manuals/index.htm
http://www.intel.com/products/processor/manuals/index.htm
http://www.blackhat.com/presentations/bh-usa-05/BH_US_05-Jack_White_Paper.pdf
http://www.blackhat.com/presentations/bh-usa-05/BH_US_05-Jack_White_Paper.pdf
http://www.f-secure.com/weblog/archives/kasslin_AVAR2006_KernelMalware_paper.pdf
http://www.f-secure.com/weblog/archives/kasslin_AVAR2006_KernelMalware_paper.pdf
http://www.f-secure.com/weblog/archives/kasslin_AVAR2006_KernelMalware_paper.pdf
http://www.phrack.org/issues.html?issue=62&id=12&mode=txt
http://www.phrack.org/issues.html?issue=62&id=12&mode=txt

[27] M. B. Jones. Interposition agents: Trans-
parently interposing user code at the sys-
tem interface. In Symposium on Operat-
ing System Principles, pages 80-93, 1993.
http://www.scs.stanford.edu/nyu/04fa/
sched/readings/interposition-agents.pdf

[28] Mythrandir. Protected mode programming
and O/S development. Phrack 52. Jan,
1998. http://www.phrack.org/issues.html?
issue=52&id=17#article

[29] PaX team. PAGEEXEC. Mar, 2003. http://
pax.grsecurity.net/docs/pageexec.txt

[30] Plaguez. Weakening the Linux Kernel. Phrack
52. Jan, 1998. http://www.phrack.org/
issues.html?issue=52&id=18#article

[31] Prasad Dabak, Milind Borate, and Sandeep
Phadke. Hooking Software Interrupts. Oct,
1999. http://www.windowsitlibrary.com/
Content/356/09/1.html

[32] Rutkowska, Joanna. System Virginity Veri-
fier. http://invisiblethings.org/tools/
svv/svv-2.3-src.zip

[33] Rutkowska, Joanna. Rookit Hunting vs.
Compromise Detection. BlackHat Europe,
2006. http://invisiblethings.org/papers/
rutkowska bheurope2006.ppt

[34] Rutkowska, Joanna. Introducing Stealth
Malware Taxonomy. Nov, 2006.
http://invisiblethings.org/papers/
malware-taxonomy.pdf

[35] Silvio. Shared Library Call Redirection Via
ELF PLT Infection. Phrack 56. Jan,
2000. http://www.phrack.org/issues.html?
issue=56&id=7#article

[36] skape and Skywing. Bypassing PatchGuard
on Windows x64. Uninformed Journal.
Jan, 2006. http://www.uninformed.org/?v=
3&a=3&t=sumry

[37] Skywing. Subverting PatchGuard version 2.
Uninformed Journal. Jan, 2007. http://www.
uninformed.org/?v=6&a=1&t=sumry

[38] Skywing. Anti-Virus Software Gone Wrong.
Uninformed Journal. Jun, 2006. http://www.
uninformed.org/?v=4&a=4&t=sumry

[39] Skywing. Programming against the x64 excep-
tion handling support. Feb, 2007. http://www.
nynaeve.net/?p=113

[40] Soeder, Derek. Windows Expand-down Data
Segment Local Privilege Escalation. Apr,
2004. http://research.eeye.com/html/
advisories/published/AD20040413D.html

[41] Sparks, Sherri and James Butler. Raising the
Bar for Windows Rootkit Detection. Phrack 63.
Jan, 2005. http://www.phrack.org/issues.
html?issue=63&id=8

[42] Trusted Computing Group. Trusted
Computing Group: Home. https:
//www.trustedcomputinggroup.org/home

[43] Trusted Computing Group. TPM Specifica-
tion. https://www.trustedcomputinggroup.
org/specs/TPM/

[44] Welinder, Morten. modify ldt security holes.
Mar, 1996. http://lkml.org/lkml/1996/3/6/
13

[45] Wikipedia. Call gate. http://en.wikipedia.
org/wiki/Call gate

27

http://www.scs.stanford.edu/nyu/04fa/sched/readings/interposition-agents.pdf
http://www.scs.stanford.edu/nyu/04fa/sched/readings/interposition-agents.pdf
http://www.phrack.org/issues.html?issue=52&id=17#article
http://www.phrack.org/issues.html?issue=52&id=17#article
http://pax.grsecurity.net/docs/pageexec.txt
http://pax.grsecurity.net/docs/pageexec.txt
http://www.phrack.org/issues.html?issue=52&id=18#article
http://www.phrack.org/issues.html?issue=52&id=18#article
http://www.windowsitlibrary.com/Content/356/09/1.html
http://www.windowsitlibrary.com/Content/356/09/1.html
http://invisiblethings.org/tools/svv/svv-2.3-src.zip
http://invisiblethings.org/tools/svv/svv-2.3-src.zip
http://invisiblethings.org/papers/rutkowska_bheurope2006.ppt
http://invisiblethings.org/papers/rutkowska_bheurope2006.ppt
http://invisiblethings.org/papers/malware-taxonomy.pdf
http://invisiblethings.org/papers/malware-taxonomy.pdf
http://www.phrack.org/issues.html?issue=56&id=7#article
http://www.phrack.org/issues.html?issue=56&id=7#article
http://www.uninformed.org/?v=3&a=3&t=sumry
http://www.uninformed.org/?v=3&a=3&t=sumry
http://www.uninformed.org/?v=6&a=1&t=sumry
http://www.uninformed.org/?v=6&a=1&t=sumry
http://www.uninformed.org/?v=4&a=4&t=sumry
http://www.uninformed.org/?v=4&a=4&t=sumry
http://www.nynaeve.net/?p=113
http://www.nynaeve.net/?p=113
http://research.eeye.com/html/advisories/published/AD20040413D.html
http://research.eeye.com/html/advisories/published/AD20040413D.html
http://www.phrack.org/issues.html?issue=63&id=8
http://www.phrack.org/issues.html?issue=63&id=8
https://www.trustedcomputinggroup.org/home
https://www.trustedcomputinggroup.org/home
https://www.trustedcomputinggroup.org/specs/TPM/
https://www.trustedcomputinggroup.org/specs/TPM/
http://lkml.org/lkml/1996/3/6/13
http://lkml.org/lkml/1996/3/6/13
http://en.wikipedia.org/wiki/Call_gate
http://en.wikipedia.org/wiki/Call_gate

	Introduction
	Techniques
	Image Patches
	Function Prologue Hooking
	Disabling SeAccessCheck

	Descriptor Tables
	IDT
	GDT / LDT
	SSDT

	Model-specific Registers
	IA32_SYSENTER_EIP

	Page Table Entries
	Function Pointers
	Import Address Table
	KiDebugRoutine
	KTHREAD's SuspendApc
	Create Thread Notify Routine
	Object Type Initializers
	PsInvertedFunctionTable
	Delayed Procedures

	Asynchronous Read Loop
	Leaking CS

	Prevention & Mitigation
	Running Code in Kernel-Mode
	PatchGuard versus Rootkits
	Acknowledgements
	Conclusion

