
Fingerprinting 802.11 Implementations
via Statistical Analysis of the Duration

Field

Or. . . I know what device driver you have by staring at a 16-bit field long enough and
squinting.

9/2006

Johnny Cache
johnycsh@802.11mercenary.net

Contents

1 Foreword 3

2 Introduction 5
2.1 Why Fingerprint 802.11? . 5
2.2 What is 802.11? . 6
2.3 Finding an 802.11 Fingerprint . 7
2.4 Organization of Paper . 7

3 Carrier Sensing in the 802.11 MAC 8
3.1 802.11 Basics . 8
3.2 Physical and Virtual Carrier Sense 9

4 Statistical Analysis of Duration Field 11
4.1 What is in a Print Database? . 12
4.2 The Duration Matching Algorithm 14
4.3 SimpleComparison Metric . 14
4.4 MediumCompare Metric . 18
4.5 ComplexCompare Metric . 21
4.6 BayesCompare Metric . 22
4.7 Modified BayesCompare Metric 25

5 Results 28
5.1 SimpleCompare . 29
5.2 MediumCompare . 30
5.3 ComplexCompare . 31
5.4 BayesCompare . 31
5.5 Modified BayesCompare . 32
5.6 Results Summary . 32

6 Conclusions and Future Work 34
6.1 Other Matching Metrics . 34
6.2 Future Work - MAC vs. PHY Fingerprinting 35

1

A Complete Results 36
A.1 Duration Analysis Results . 36

A.1.1 SimpleCompare Results 36
A.1.2 MediumCompare Results 37
A.1.3 ComplexCompare Results 38
A.1.4 BayesCompare Results . 39
A.1.5 BayesCompare-Modified Results 40
A.1.6 Duration Analysis Results Summary 41

B Implementation Considerations 42
B.1 PCAP Creation for Duration Analysis 42

C Tool Usage 43
C.1 Duration-Print-Grader . 44

D Comprehensive Device Driver Information 46

2

Chapter 1

Foreword

Abstract: The research presented in this paper provides the reader with a set
of algorithms and techniques that enable the user to remotely determine what
chipset and device driver an 802.11 device is using. The technique outlined is
entirely passive, and given the amount of features that are being considered for
inclusion into the 802.11 standard, seems quite likely that it will increase in
precision as the standard marches forward.

The implications of this are far ranging. On one hand, the techniques can
be used to implement innovative new features in Wireless Intrusion Detection
Systems (WIDS). On the other, they can be used to target link layer device
driver attacks with much higher precision.

LIST OF FIGURES

Figure 4.1. SimpleCompare duration-value onlyanalysis
Figure 4.2. SimpleCompare (packet type, duration) analysis
Figure 4.3. MediumCompare duration-value only analysis
Figure 4.4. MediumCompare (packet type, duration) analysis
Figure 4.5. CompleCompare duration-value only analysis
Figure 4.6. ComplexCompare (packet type, duration) analysis
Figure 4.7. BayesCompare duration value only analysis
Figure 4.8. BayesCompare (packet type, duration) analysis
Figure 4.9. BayesCompare-Modified duration value only analysis
Figure 4.10. BayesCompare-Modified (packet-type, duration) analysis

LIST OF TABLES

4.1 Summary of databases created
4.2 Implementation-Id: 1 (Atheros, ar5211.sys), database: Lexie

3

4.3 Implementation-Id: 9 (Prism-2.5, smc2532w.sys), database: Lexie
4.4 Implementation-Id: 1 (Atheros, ar5211.sys), database: Lexie
4.5 Implementation-Id: 1 (Atheros, ar5211.sys), database: Lexie
5.1 Ordered list generated from a matching metric.
5.2 SimpleCompare, duration values only
5.3 SimpleCompare, (packet type, duration) pairs only
5.4 SimpleCompare combined.
5.5 MediumCompare, (packet type, duration) pairs only
5.6 ComplexCompare, (packet type, duration) pairs only
5.7 Results summary
A.1 SimpleCompare, duration values only
A.2 SimpleCompare, (packet type, duration) pairs only
A.3 SimpleCompare combined.
A.4 MediumCompare, duration values only
A.5 MediumCompare, (packet type, duration) pairs only
A.6 MediumCompare combined.
A.7 ComplexCompare, duration values only
A.8 ComplexCompare, (packet type, duration) pairs only
A.9 ComplexCompare combined.
A.10 BayesCompare, duration values only
A.11 BayesCompare, (packet type, duration) pairs only
A.12 BayesCompare combined.
A.13 BayesCompare-modified, duration values only
A.14 BayesCompare-modified, (packet type, duration) pairs only
A.15 BayesCompare-modified combined.
A.16 Results summary
C.1 Sample output from duration-print-matcher
C.2 output from: ./duration-print-grader -P
./print-db/lexie/
D Exhaustive 802.11 implementation data

Acknowledgements: I would like to thank Dr. Volpano for his technical as
well as editorial expertise. Without his help, this work would be significantly
more difficult on the reader. I would also like to thank Joshua Wright and Mike
Kershaw for their technical input and contributions to those of us interested
in 802.11 research in general. This material is based upon work supported by
the National Science Foundation under Grant No. DUE0414102. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of the National
Science Foundation.

This paper is a subset of the thesis research done while attending the Naval
Postgraduate School. The entire thesis is available at www.802.11mercenary.
net/~johnycsh/publications.

4

www.802.11mercenary.net/~johnycsh/publications
www.802.11mercenary.net/~johnycsh/publications

Chapter 2

Introduction

The adoption of wireless local area networks (WLANs) has exploded in re-
cent years due in large part to standardization by the IEEE and certified WiFi
interoperability; see the compilation Wireless LAN Edition[1]. Vendors ship
products that they claim conform to the IEEE 802.11 standard and in many
ways, they do, as the WiFi industry consortium can confirm. Yet products can
also vary widely in their implementations of this standard. An implementa-
tion usually comprises a software component (the device driver), the hardware
(radio chipset), and firmware for that chipset. The combination of the three
uniquely identifies the implementation. Invariably, an implementation exhibits
some behavior that can be observed or measured and is unique. This behav-
ior is called its 802.11 fingerprint. Fingerprints enable us to identify 802.11
implementations.

2.1 Why Fingerprint 802.11?

Some 802.11 implementations have vulnerabilities that make devices that use
the wireless technology vulnerable as well. Exploits developed for one imple-
mentation may not work for another so an attacker might prefer to identify the
implementation first. Then they can choose the appropriate exploit rather than
cycling through them and possibly drawing attention to themselves by crashing
a device with the wrong exploit.

Fingerprints can also be used in a defensive way. A system administrator may
maintain a database of authorized devices approved for use on their WLAN.
Typically the devices are identified by their globally-unique 802.11 MAC ad-
dresses. But this is insufficient because a MAC address can be easily cloned by
an authorized user using an unauthorized device. A better approach is to use an

5

802.11 fingerprint. Knowing which 802.11 implementations are vulnerable, an
administrator can monitor their environment for wireless activity, observe 802.11
fingerprints, and be notified of an authorized user who is using a device with
a vulnerable 802.11 implementation even if the device clones the 802.11 MAC
address of an authorized, and presumably secure, implementation. There are
a variety of monitoring products on the market today, generally called Wire-
less Intrusion Detection Systems (WIDS), where 802.11 fingerprints could be
observed.

2.2 What is 802.11?

802.11 is a link-layer protocol standard ratified by the IEEE. The first version
of the standard was ratified in 1997 and the most recent revision was ratified in
1999 and reaffirmed in June 2003 [2]. Alternative data rates and PHY-layer pro-
tocols are specified in amendments 802.11b-1999 and 802.11a-1999 respectively.
The Wireless LAN Edition is a compilation of the standard and its amendments.
Many people equate ”Wi-Fi” with 802.11. Wi-Fi is a term created by the Wi-Fi
assocation[3]. It is quite possible for a device to be Wi-Fi compliant without
fully complying with the 802.11 standard.

IEEE Std 802.11 is a Media Access Control (MAC) and Physical Layer (PHY)
standard governing wireless local area networks operating in the ISM band which
is unlicensed radio spectrum. This required the 802.11 Task Group to deal with
problems that have no simple analogy in the wired world.

One of the most obvious problems is the unreliability of a wireless link. The
standard operates in unlicensed spectrum and therefore competes with cordless
phones and other wireless networks for the medium. Different wireless networks
using the same frequency must co-exist. The designers had to take into ac-
count various means to stop independent networks from unfairly impacting the
performance of each other. The 802.11 standard includes features to address
this problem. These include positive acknowledgement with retransmission, and
special medium access control frames called Request To Send (RTS) and Clear
To Send (CTS).

In summary, the 802.11 standard is in many ways more complicated than its
wired-Ethernet counterpart due to issues that arise in a wireless environment.
It has to deal with many problems that have no wired-side analogy. Ultimately,
it is this complexity that leads implementations to vary, making fingerprinting
possible.

6

2.3 Finding an 802.11 Fingerprint

An implementation comprises a driver, radio chipset, firmware, and possibly
some user-space applications. Ideally, one would be able to identify any compo-
nent of a given implementation and further refine identification of each software
component by its version. Whether it is possible to identify these components
depends largely upon behaviors not governed by the standard and where they
are implemented. As we shall see, there is even deviation from the standard
within the industry that presents very useful opportunities for fingerprinting.
Developing 802.11 fingerprints is largely an exploratory exercise in determining
how an 802.11 implementation behaves uniquely.

The strength of a fingerprint determines whether the components of an imple-
mentation can be identified individually. The fingerprints described in this paper
afford reliable identification of 802.11 chipsets, drivers, and in some cases, differ-
ent versions of the same driver. No attempt was made to differentiate firmware
versions or userland applications that might influence the behavior of the driver.

One of the most unique aspects of 802.11 implementation fingerprinting is that
many characteristics of the implementation are controlled by hardware. How-
ever, there is a trend in modern 802.11 chipsets to push more and more function-
ality into software. Popular examples of these chipsets include products from
Atheros and Ralink. Though it seems unlikely, it is quite possible that drivers
for software based radio chipsets (such as products from Atheros and RaLink)
could be patched, allowing them to mimic the details of other implementations.
Doing this would allow an attacker to have his driver or chipset intentionally
misidentified, perhaps to sidestep a fingerprint-aware WIDS.

Many other devices however have certain aspects that cannot be controlled
from software. The older Prism2 generation of chipsets is the best example of
a chipset that operates somewhat independently of the driver.

2.4 Organization of Paper

This paper is organized into the following chapters. Chapter 3 provides a brief
overview of the relevant portions of the IEEE 802.11 MAC rules. Chapter 4
covers the algorithms used to analyze the duration field. Chapter 5 analyzes
the accuracy of this analysis. Chapter 6 contains future work and concluding re-
marks. Finally three appendices are also included: Appendix A lists the results
for all matching metrics covered in Chapter 5. Appendix B covers implementa-
tion details that can be used to validate the techniques and results. Appendix
C gives a brief overview on running the associated tools. Appendix D contains
detailed information regarding every 802.11 implementation tested.

7

Chapter 3

Carrier Sensing in the
802.11 MAC

This chapter provides the relevant background of the 802.11 MAC needed to
understand the fingerprinting algorithms covered in chapter 4. This background
is by no means a complete description of the 802.11 standard.

3.1 802.11 Basics

Standard 802.11-1999 specifies Medium Access Control (MAC) and Physical
(PHY) layer protocols. There are two types of MAC protocols described, Point
Coordination Function (PCF) and Distributed Coordinated Function (DCF).
It is possible to alternate between them. When the PCF is operating, the
medium is in a contention-free period since the point coordinator, an access
point, controls all access to the medium. When end stations compete for the
medium, including the access point, they use the DCF MAC protocol. This
period is called a contention period.

The standard specifies three different frame types: control, management, and
data. Control frames are used for medium reservation and acknowledgements,
and have a real-time processing requirement. Medium reservation control frames
are not confined to a single network; they are intended to be processed by all
stations on a given channel even though they may belong to different wireless
networks, or Basic Service Sets (BSS). These frames carry a duration field that
is essentially an announcement of a station’s intention to use the medium for
a period of time. Stations operating on the same channel should observe the
announcement regardless of the BSS to which they belong. Otherwise they risk
interference with their own transmissions. In this way, multiple Basic Service

8

Sets can coexist on the same channel.

MAC management in 802.11 includes authentication and association with an
access point. It also includes provisions for locating networks via probe requests
and beacon packets. Management frames handle all of these tasks.

Finally, data frames are used to transmit data.

3.2 Physical and Virtual Carrier Sense

The 802.11 standard specifies two ways to determine if the medium is busy.
The first is a physical carrier sense. 802.11 specifies that any PHY must provide
a technique to sense if the medium is busy. The function in the PHY layer
responsible for this is called the clear channel assessment (CCA).

Two clients that belong to the same BSS may not be within radio range of
each other. Therefore, neither will be able to detect energy on the medium
necessary to do a CCA. Further, it is more efficient in some cases for a client
to reserve the medium in advance, for instance, for an acknowledgement which
can be sent immediately upon receipt of a frame. Both cases are handled using
a virtual carrier sense mechanism. It consists of a Network Allocation Vector
(NAV) maintained by each client. The NAV can be thought of as a client’s best
guess as to how long the medium will be busy. The client’s NAV is updated in
response to receiving a frame whose duration field contains a value that exceeds
the current NAV value.

The duration field is found in nearly every packet. It is not included in Power-
Save Poll frames, as the bits are used for the association ID field. Conceptually
the duration field of a frame is the amount of time the transmitting client
wishes to reserve the medium for itself to send subsequent frames, including
any replies expected of the recipient such as acknowledgements. How this value
is computed depends on the exact type of frame it is in. The duration field
is 16 bits. Therefore the largest value it could reserve the media for is 65,535
microseconds. However the standard explicitly says to ignore any values greater
than 32,767.

In a typical scenario where a client is not sending an unfragmented data frame,
the duration field will be the amount of time it takes for the inter-frame spacing,
combined with the time required for the receiving station to send an ACK
packet; in other words, a constant. In management types (such as beacons) or
some control types (such as ACKs) no more traffic is needed, and the duration
field is set to zero.

In more complicated scenarios involving fragmentation, the duration field will
include the time required not only for the inter-frame spacing and ACK, but for
the rest of the fragments. When using frames to explicitly reserve the media

9

(RTS/CTS) it is the duration field that specifies how long the media is reserved.
Finally an important aspect of the PCF is implemented by using the duration
field to interoperate with stations on the same channel using the DCF.

10

Chapter 4

Statistical Analysis of
Duration Field

As mentioned in chapter 3, the duration field is a 16 bit value which describes
how long the station that currently has access to the medium intends to keep it,
after the current transmission. Even though the duration field is 16 bits wide, it
only takes on a few discrete values. Common values are 0 (for packets that are
not acknowledged such as management frames broadcast during a Contention
Period), and the time it takes for a SIFS (Short Interframe Spacing) interval
plus an acknowledgment, used in transmitting unicast data frames.

Variables that can affect the duration field include some parameters of the lo-
cal Basic Service Set specified in a beacon’s fixed flags field. These include
short slot time, short pre-amble, and of course, the data rates supported. The
net result of this is that ideally a unique fingerprint for a given implemen-
tation would be taken across all possible variations of these parameters. For
this work, four databases were created. The databases currently have human-
friendly names (the name of the AP used to create them). In the future, the
number of databases will grow large enough that an algorithmic naming scheme
(rates-flags for example) will be employed.

Since the performance of this technique varies with the parameters of the Basic
Service Set with which it is associated, a brief introduction to the four networks
it was developed and tested against is given below.

Table 4.1 represents data about the four WLANs on which all experiments in
this chapter were performed. They were chosen to give a good estimate of real
world network deployments. Lexie is a b-only Cisco aironet 350 . Mixed–wrt54g
is a rev5 Linksys wrt54g running in mixed mode. Mixed–Airplus is a D-link DI-
524, and G–wrt54g is a rev5 Linksys wrt54g in g-only mode. The models of

11

Name Rate Flags
Lexie 1.0 - 11.0 Mb/sec (b-only) 0x0021 (short pre-amble)
mixed–wrt54g 1.0 - 54.0 (mixed) 0x0401, 0x0001 (disables SST if a

b client is in range)
mixed–AirPlus 1.0 - 54.0 (mixed) 0x0421 (SST, short pre-amble)
G–wrt54g 1.0 - 54.0 (G-only) 0x0421 (SST, short-preamble)

Table 4.1: Summary of databases created

the Access Points used are mentioned to give the reader some sense of market
representation. The databases generated from each AP are not tied to that
specific AP. Clients should respond identically in any BSS with the same set of
parameters listed above.

4.1 What is in a Print Database?

The tools and techniques described in this chapter all operate on a surprisingly
little amount of information, stored in what we call a print database. There is
a fingerprint for each implementation. A fingerprint comprises a list of records
of the form (packet type, duration-value, count) which reflects for the given
packet type, the number of times the given duration value appeared. All data
and management frames are observed while control packets are discarded.

Two example prints from the same database are given in Tables 4.2 and 4.3.
Both prints were generated from packet captures done while a client associates,
obtains an IP address from DHCP, and proceeds to load a few web pages. With
so little activity, there is a remarkable range of behaviors. These two prints were
chosen to illustrate the range of behaviors between Atheros and Prism chipsets.

packet-type (duration [duration observed frequency /
number packets of this type])

Assoc Request (314 [2/2])
probe request (0 [75/77]) (314 [2/77])
Authentication (314 [2/2])
Data (162 [167/278]) (0 [111/278])
Null Function (162 [597/597])

Table 4.2: Implementation-Id: 1 (Atheros, ar5211.sys), database: Lexie

12

packet-type (duration [duration observed frequency /
number packets of this type])

Assoc Request (258 [13/13])
probe request (0 [50/50])
Authentication (53389 [13/13])
Data (213 [1229/1303]) (0[54/1303]) (223[20/1303])
Null Function (37554 [16/16])

Table 4.3: Implementation-Id: 9 (Prism-2.5, smc2532w.sys), database: Lexie

Two things stand out immediately from these fingerprints. The first is that
the second implementation (the prism2.5 based implementation) uses duration
values that are entirely different than those used by the better behaved Atheros
card. Secondly, the prism2.5 based implementation uses two illegal duration
values. The standard says that any values greater than 32767 should be ignored.

Though these two implementations are different enough that they can be eas-
ily distinguished, most of the other sampled implementations fell somewhere
between them. To get better resolution, two ratios were introduced: the ratio
of packets with a given duration relative to the total number of packets sam-
pled, and the ratio of pairs (packet type, duration) for a given packet type and
duration relative to the total number of packets seen of that packet type.

Though these numbers can fluctuate across different samples for the same im-
plementation, they proved to be stable enough to cause an improvement in the
algorithms that use them. Tables 4.4 and 4.5 show this information for the
Atheros fingerprint above in Table 4.2.

packet-type (duration [ratio of packets with this dura-
tion, for given packet-type])

Assoc Request (314 [100%])
probe request (0 [97%]) (314 [3%])
Authentication (314 [100%])
Data (162 [60%]) (0 [40%])
Null Function (162 [100%])

Table 4.4: Implementation-Id: 1 (Atheros, ar5211.sys), database: Lexie

13

duration ratio of packets with this duration, regard-
less of packet-type

0 19%
162 80%
314 1%

Table 4.5: Implementation-Id: 1 (Atheros, ar5211.sys), database: Lexie

4.2 The Duration Matching Algorithm

The matching algorithm expects as input a packet capture (pcap) file gathered
by sniffing the exchange between an 802.11 NIC and one of the 802.11 Access
Points for which a print database has been assembled for a collection of 802.11
implementations. The input is compared against each print in the database us-
ing a particular matching metric. We give five matching metrics. Each matching
metric produces a scalar quantity measuring the degree of match between the
input and a print. The algorithm outputs a list of 802.11 implementations
ordered by decreasing degree of match.

The metrics are presented in order of increasing complexity. Values from one
metric are not intended to be comparable to values from another.

4.3 SimpleComparison Metric

SimpleCompare is the first of three related metrics, the other two being Medium-
Compare and ComplexCompare. SimpleCompare is unique in that it compares
the input against a print in the database without using any information about
other prints in the database. That means that if a certain duration value is
incredibly unique, such as the illegal ones only found in prism2 based imple-
mentations, it has no opportunity to take this into consideration.

All the metrics presented in this chapter break the fingerprints up into two
different sets of data points. The first set is a set of pairs of the form (duration
value, count). The second set is a set of triples of the form (packet type, duration
value, count). The diagrams below leave the count component of both tuples
out for clarity.

SimpleCompare, as well as the other metrics, has three different flavors. It can
be computed using just the (duration value, count) pairs, or it can be computed
using just the (packet type, duration value, count) triples. Finally the results
from both analyses can be combined. Combining the results of these metrics is
simply a matter of adding the return values from both metrics.

14

SimpleCompare utilizes two functions that are used throughout this chapter.
They are used to compute the duration ratios in tables 5.2 and 5.3, and are
defined as follows.

duration ratio(p, d) = # of packets with packet type = p, duration = d
of total packets with packet type = p

The SimpleCompare metric is defined below. The input packet capture is de-
noted by L. R, on the other hand, denotes a print in the capture database for a
particular 802.11 implementation.

duration ratio(d) = # of packets with duration = d
of total packets observed

Figure 4.1: SimpleCompare duration-value only analysis

sum = 0;
for every duration-value d ∈ (L ∩ R)

sum += 1.0 − |L.duration ratio(d) − R.duration ratio(d)|
return sum;

15

The metric weights common durations that appear in their respective prints at
roughly the same rate more heavily than ones that do not. However, Simple-
Compare doesn’t pay attention to duration values that aren’t in the intersection,
as illustrated in Figure 4.1, even though the number of values not in the intersec-
tion is clearly a strong indicator of how close two prints match. It also doesn’t
have any idea of how unique any specific duration values are across the entire
database.

At first, this lack of a global perspective on the relative likeliness of seeing du-
ration values seemed that it would hinder this algorithm significantly. Consider
the case when a prism2 sample is input that uses all the same illegal duration
values as the one stored in the database, but at very different rates. Simple-
Compare lacks the information to realize that the illegal values identify a prism2
implementation, and could grade this sample incorrectly.

At this point, SimpleCompare is also ignoring the packet type in which the
duration values appear. This can cause two problems. One is that two differ-
ent implementations use the same duration value, but in consistently different
packet types (probe requests versus association responses for example). The
other is that the ratio that duration values are used across all packet types fluc-
tuate largely across packet samples, but the rate is much more consistent when
confined to a particular packet type. Both of these problems are addressed by
considering the packet types when looking at durations.

We can reuse SimpleCompare except this time we run it against the (packet
type, duration) pairs, as illustrated below.

16

Figure 4.2: SimpleCompare (packet type, duration) analysis

sum = 0;
for every pair(packet type p, duration-value d) ∈ (L ∩ R)

sum += 1.0 − |L.duration ratio(p, d) − R.duration ratio(p, d)|
return sum;

17

4.4 MediumCompare Metric

SimpleCompare does not account for highly-unique duration values. Medium-
Compare was created as an alternative to deal more intelligently with such
duration values. Intuitively, if two prints both use duration values that are
globally unique (i.e. illegal values generated by prism2-based implementations)
then this should count more than matching very common values such as 0.

Like SimpleCompare, the MediumCompare metric compares an input pcap with
every print in the database except that for each print in the database, it also
considers global duration uniqueness by examining the rest of the database.
It computes one of two weights, either duration uniqueness, or packet type
duration uniqueness, depending on the data set as follows.

When computing duration uniqueness the metric counts the total number of
unique (implementation, duration value) pairs in the entire database. This does
not take into account how often an individual duration value appears in packets
for a given implementation. Rather, it counts how often a duration value is used
across all implementations. If two implementations both use duration value 314,
but one uses it 1% of the time, and the other uses it 80% of the time, both of
these implementations will contribute the same amount to duration uniqueness.

duration uniqueness(d) = # of unique (implementation, duration) tuples
of unique (implementation, duration = d) tuples

Similarly packet type duration uniqueness is computed by counting the total
number of unique (implementation, packet type duration) values across the
entire database.

duration uniqueness(p, d) =
of unique (implementation, packet type, duration) tuples

of unique (implementation, packet type = p, duration = d) tuples

Once these two values have been computed MediumCompare is very similar to
SimpleCompare.

18

Figure 4.3: MediumCompare duration-value only analysis

sum = 0;
for every duration-value d ∈ (L ∩ R)

sum += duration uniqueness(d) ∗
1.0 − |L.duration ratio(d) − R.duration ratio(d)|

return sum;

19

Figure 4.4: MediumCompare (packet type, duration) analysis

sum = 0;
for every packet type p, duration-value d ∈ (L ∩ R)

sum += duration uniqueness(p,d) ∗
1.0 − |L.duration ratio(p, d) − R.duration ratio(p, d)|

return sum;

20

4.5 ComplexCompare Metric

Notice that the MediumCompare and SimpleCompare metrics ignore durations
outside the intersection. One might think that such information would improve
a fingerprinting capability, however, we found this is not the case. To illus-
trate, a metric called ComplexCompare was investigated. It was designed to
take into account all the data points that don’t fall in the intersection of two
prints. ComplexCompare computes the metric that MediumCompare does and
then visits every data point not in the intersection of the prints, computing
duration uniqueness, or packet type duration uniqueness and then subtracting
this value from the metric. The motivation for this behavior is that if L con-
tains very unique durations and R doesn’t, then the metric should be decreased
proportionally by the uniqueness of these values.

Figure 4.5: ComplexCompare duration-value only analysis

ret = MediumCompare(L,R);
sum = 0;
for every duration-value d 6∈ (L ∩ R)

sum += duration uniqueness(d)
return ret - sum;

21

Figure 4.6: ComplexCompare (packet type, duration) analysis

ret = MediumCompare(L,R);
sum = 0;
for every packet type p, duration-value d 6∈ (L ∩ R)

sum += packet type duration uniqueness(p, d)
return ret - sum;

4.6 BayesCompare Metric

BayesCompare was created as an attempt to use a well understood rule to
classify 802.11 implementations. In document classification, the problem is that
of given a set W of words appearing in a document, classify the document as
belonging to one of several categories. One takes the category to be the category
C that maximizes P (W |C) P (C). The conditional probability P (W |C) comes
from a training set of documents known to be in category C. If we take W to be

22

the set of durations occurring in a given packet capture that we want to identify
by implementation then P (W |C) becomes the probability of W occurring in a
capture given that the capture comes from 802.11 implementation C.

Classification in this manner is only as good as the training set (print database).
A given training set may not yet know that implementation C can produce
duration D. Hence P (W |C), which is approximated from the training set, is
zero when W contains D even though W may contain another duration that
uniquely identifies C. Further, approximating P (C) is problematic, as it is the
probability of seeing a given 802.11 implementation. One might approximate it
by perhaps chipset market share but this would be somewhat inaccurate because
it ignores the fact that a device driver is part of an 802.11 implementation we
wish to identify. Getting an accurate approximation of it is difficult so we chose
to ignore it. This of course puts the metric at a slight disadvantage compared
to the other metrics, as we shall see.

Let X be an 802.11 implementation for which a fingerprint exists in the print
database. Let L be the duration fingerprint arising from an input pcap file. We
want the probability that the input pcap file originated with implementation
X given L: P (X|L). Using Bayes rule, P (X|L) = (P (L|X)P (X))/P (L). The
idea here is to use these conditional probabilities to rank the degree of a match
between L and each fingerprint in the print database. Therefore, we did not
compute P (L) for a given input pcap as it is constant across all fingerprints
in the database. Of course probability P(X) is not constant across all finger-
prints but computing it is problematic, as discussed above. Therefore, we didn’t
compute it as part of the conditional probability. Further, to simplify things,
we approximated P (L|X) as the product P (d1|X) ∗ P (d2|X) ∗ · · · ∗ P (dn|X)
where d1, d2, . . . are the distinct durations that appear in L. This assumes that
the individual duration values in L occur independently which one can argue
isn’t true since the durations occur in sequence for certain control frames, for
instance, duration values in ACK, RTS and CTS frames. But as mentioned
previously, control frames are ignored in fingerprints.

If L denotes the fingerprint arising from an input pcap file and R a fingerprint in
the print database then we take the preceding product to be Π R.duration ratio(d)
where d ranges over all durations in L. And when taking into account packet
types in which durations occur, it becomes Π R.duration ratio(p, d) where p
and d range over all packet types and durations respectively where duration d
occurs in a packet of type p in L.

23

Figure 4.7: BayesCompare duration value only analysis

ret = 1.0
for every duration-value d ∈ L

ret *= R.duration ratio(d)
return ret;

24

Figure 4.8: BayesCompare (packet type, duration) analysis

ret = 1.0
for every packet type p, duration-value d ∈ L

ret *= R.duration ratio(p, d)
return ret;

4.7 Modified BayesCompare Metric

Another variant of BayesCompare was investigated. As pointed out above,
conditional probability P (L|X) can become zero if L has a duration that has
not yet been learned to be producible by implementation X, perhaps because
the print database hasn’t been updated for some time. So another version was
explored where only duration values that fall in the intersection of an input
fingerprint L and a database fingerprint R are included in the calculation of
P (L|X). So the product becomes Π R.duration ratio(d) where d ranges over all
durations in L ∩ R, and Π R.duration ratio(p, d) where p and d range over all

25

packet types and durations respectively where duration d occurs in a packet of
type p in L ∩ R.

Figure 4.9: BayesCompare-Modified duration value only analysis

ret = 1.0
for every duration-value d ∈ (L ∩ R)

ret *= R.duration ratio(d)
return ret;

26

Figure 4.10: BayesCompare-Modified (packet-type, duration) analysis

ret = 1.0
for every packet type p, duration-value d ∈ (L ∩ R)

ret *= R.duration ratio(p, d)
return ret;

27

Chapter 5

Results

This section presents performance results for each of the duration-based match-
ing metrics described in chapter 4. To compare the performance of these metrics,
a rating system was devised as follows. Each metric was exercised across four
print databases using three packet capture samples s1, s2, and s3 as input for
each 802.11 implementation. We define for each 802.11 implementation I, a
success probability RI for a matching metric M. It is the probability that M
correctly identifies a sample, that is, identifies that sample as originating with
I when it does indeed originate with I.

For example, consider Table 5.1. This print database has 13 fingerprints hence
there are 13 entries. The table was produced by using the MediumCompare
metric on a particular sample. The tables tells us that this metric believes the
sample originated with the Broadcom-MiniPCI (ID 10 in the table) since it has
rank zero. But this is incorrect. The sample originated with the Apple-Airport
Extreme (ID 5), which has rank ”1”. So we take as SimpleCompare’s probability
of succeeding when the sample originates with Apple-Airport Extreme to be (13
- rank)/13 or (13 - 1)/13 since the correct implementation is given rank ”1” by
the metric.

Now since there are three samples, we extend RI for a metric M to be RI =
[(13−s1rank)+(13−s2rank)+(13−s3rank)]/(3∗13) (eq 5.1) where si rank is
the rank assigned by M to the 802.11 implementation I that actually produced
sample si. If the probability that I occurs is PI then the success rate of M is the
unconditional probability of success given by PI1∗RI1+PI2∗RI2+· · ·+PI13∗RI13

Each term in this sum is the product of the probability of seeing a sample from
one of the 13 implementations and the probability of M succeeding to identify
it in that case. So M could have a good overall success rate even though it
performs badly when trying to identify a sample as belonging to some 802.11
implementation if that implementation doesn’t arise often. However, we shall

28

assume that implementations are equally likely to occur. In that case, the sum
above becomes (RI1 + RI2 + · · · + RI13)/13.

rank score ID Model chipset driver
0 79.03 10 Broadcom-

MiniPCI
BCM4318 bcmwl5.sys

1 78.91 5 Apple-Airport
Extreme

BCM4318 AppleAirport2.kext

2 73.51 6 Zonet-ZEW1520 BCM4306 bcmwl5.sys
3 56.03 7 Intel-

IPW220BG
IPW2200BG w29n51.sys

4 54.74 13 Cisco-Aironet-
350

Prism2 pcx500.sys

5 53.06 11 Sony-PSP unknown unknown
6 47.19 8 D-Link-dwl-

g122
RA2570 rt2500usb.sys

7 39.95 4 Proxim-Orinoco
Silver

AR5212 ntpr11ag.sys

8 39.55 3 Proxim-Orinoco
Silver

AR5211 ntpr11ag.sys

9 39.47 2 Proxim-Orinoco
Silver

AR5212 ntpr11ag.sys

10 38.53 1 Linksys-
WPC55AG

AR5212 ar5211.sys

11 28.55 12 Nintendo-DS unknown unknown
12 22.61 9 SMC-2532W-B Prism2.5 smc2532w.sys

Table 5.1: Ordered list generated from a matching metric

5.1 SimpleCompare

The following tables show how well SimpleCompare did against all four databases.
The number of samples represents how many pcap files the input fingerprints
were computed across. 1-sample means that the fingerprint was computed only
from the first sample for a given implementation, while 3-sample means all three
pcap files were used to generate the print.

Table 5.2 below shows how well SimpleCompare does when it is only analyzing
durations, not (packet type, duration) pairs. Table 5.3 shows how well Simple-
Compare does when it only analyzed (packet type, duration) pairs. Table 5.4
shows the results when both techniques are combined.

Though combining the two techniques did not improve the overall average, it did

29

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9724 0.9546 0.9745 0.9115
2-samples 0.9783 0.9408 0.9630 0.8854
1-samples 0.9586 0.9408 0.9583 0.8333
Average 0.9698 0.9454 0.9653 0.8767

Total Average 0.9393

Table 5.2: SimpleCompare, duration values only

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9921 0.9606 0.9769 0.9688
2-samples 0.9901 0.9645 0.9861 0.9479
1-samples 0.9744 0.9586 0.9745 0.9531
Average 0.9855 0.9612 0.9792 0.9566

Total Average 0.9706

Table 5.3: SimpleCompare, (packet type, duration) pairs only

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9901 0.9882 0.9884 0.9531
2-samples 0.9882 0.9684 0.9861 0.9531
1-samples 0.9744 0.9625 0.9769 0.9115
Average 0.9842 0.9730 0.9838 0.9392

Total Average 0.9701

Table 5.4: SimpleCompare combined.

have one important effect. In the combined table, scores consistently increase
with sample size, across all databases. This is not the case in either of the two
tables preceding it. This is a very desirable property, and could arguably be
worth the minor price paid in overall accuracy.

5.2 MediumCompare

Although MediumCompare has significantly more information at its disposal
than SimpleCompare (since MediumCompare gets the entire print database over
which to compute weights) it only improved its best-case score by .0017 relative
to SimpleCompare. This seems to indicate that while knowing certain duration

30

values are highly unique, the implementations that used them identified them
enough already that the extra weight given to them wasn’t needed in general.

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9921 0.9684 0.9907 0.9635
2-samples 0.9901 0.9625 0.9884 0.9375
1-samples 0.9882 0.9546 0.9861 0.9427
Average 0.9901 0.9618 0.9884 0.9479

Total Average 0.9721

Table 5.5: MediumCompare, (packet type, duration) pairs only

5.3 ComplexCompare

ComplexCompare did not improve upon its predecssors, performing consistently
worse then Simple or MediumCompare. In fact, no algorithm tested that at-
tempted to take into consideration duration values that don’t match ever made
an improvement upon those that simply ignored them.

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9744 0.9566 0.9722 0.8958
2-samples 0.9763 0.9507 0.9722 0.9062
1-samples 0.9803 0.9507 0.9931 0.9323
Average 0.9770 0.9527 0.9792 0.9114

Total Average 0.9551

Table 5.6: ComplexCompare, (packet type, duration) pairs only

5.4 BayesCompare

Considering the significant disadvantage that BayesCompare is at relative to
the other metrics, it performed quite well. It is quite possible that in practice
BayesCompare could be the most accurate. This could be accomplished by map-
ping the probability of seeing particular chipset, device-driver implementation
back to the marketshare of the chipset. This optimization is not implemented
in the current system, and both flavors of BayesCompare perform consistently
worse than the other metrics presented.

31

5.5 Modified BayesCompare

The Modified BayesCompare did consistently worse than BayesCompare. This
seems to indicate that contrary to our original suspicion, having the conditional
probabilities go to zero when an unknown duration value is encountered is a
good idea.

5.6 Results Summary

A table representing a summary of the algorithms’ performance is below. It is
interesting to note that while MediumCompare out-performed SimpleCompare,
it only did so by a small margin. This seems to indicate that SimpleCompare has
little trouble identifying the implementations that use globally unique duration
values, even though SimpleCompare is unaware of the uniqueness.

32

Metric dur type, dur combined
SimpleCompare 0.9393 0.9706 0.9701
MediumCompare 0.9381 0.9721 0.9621
ComplexCompare 0.9370 0.9551 0.9500
BayesCompare 0.8456 0.9190 0.9209
BayesCompare-modified 0.2866 0.9243 0.7502

Table 5.7: Results summary

33

Chapter 6

Conclusions and Future
Work

The techniques outlined in this paper provide passive fingerprinting algorithms
that consistently perform at 95% or high accuracy across many implementations
and different 802.11 network parameters. It also demonstrated a new level of
resolution by uniquely identifying different version of the same driver in many
cases. These techniques can be used to target link layer device driver exploits
with a high degree of reliability, or integrated into WIDS to help enforce access
control.

6.1 Other Matching Metrics

An entirely different type of metric, dubbed FuzzyCompare, was also developed.
Fuzzy Compare works by comparing every (packet type, duration) tuple in a
print (L) to every other tuple in the other print, R. For each comparison it
modifies the score based on a set of coefficients and the global uniqueness of the
current duration value.

The interesting aspect about this algorithm is that the coefficients were actually
brute-forced by another program to (a modification to duration-print-grader)
to find the best possible combination of coefficients. This lead it to produce
impressive results, but it couldn’t be shown that the coefficients generated would
generalize well to data sets with unknown inputs.

FuzzyCompare extended the notion of a fingerprint to include whether or not
certain implementations make use of the various flag bits inside the 802.11
header. This really simplified down to tracking which implementations utilize

34

power savings, as the rest of the flags were always unused. Tracking a few
more bits seemed to give FuzzyCompare a significant advantage over the other
algorithms which strictly analyzed the duration field. Such a hybrid technique
will probably yield better real world results. The 802.11e QOS amendment
looks like it will provide more bits for this type of analysis.

6.2 Future Work - MAC vs. PHY Fingerprint-
ing

The 802.11 standard is responsible not only for specifying the media access
controls of wireless networks, but also the physical (PHY) layer as well. This
paper focuses on analyzing the MAC portion of the standard, but one could
imagine a tool that analyzes aspects of the PHY for unique signatures.

Such a device would need the ability to analyze the frequency that 802.11 op-
erates in (2.4GHz, 5GHz or the rarely-implemented IR band). Since the goal of
the device is to be able to analyze what typical consumer level cards are doing,
it would likely need components capable of measuring physical characteristics of
the medium with higher levels of precision than that available on commercially-
available 802.11 cards. Likely candidates for such a device include measuring
the type of preamble used in 802.11 frames and the thresholds used by cards to
detect that the medium is busy.

This paper has demonstrated that it is possible to remotely determine which
802.11 implementation generated traffic by analyzing a small sample taken dur-
ing the association phase. The technique outlined in this paper achieved a new
level of resolution that makes it possible to identify not just chipsets, but also
device drivers and their versions in many cases.

35

Appendix A

Complete Results

A.1 Duration Analysis Results

These tables show the results from every experiment conducted using the match-
ing metrics outlined in chapter 5. The values in the tables are the success rate
of a matching metric across an entire database.

A.1.1 SimpleCompare Results

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9724 0.9546 0.9745 0.9115
2-samples 0.9783 0.9408 0.9630 0.8854
1-samples 0.9586 0.9408 0.9583 0.8333
Average 0.9698 0.9454 0.9653 0.8767

Total Average 0.9393

Table A.1: SimpleCompare, duration values only

36

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9921 0.9606 0.9769 0.9688
2-samples 0.9901 0.9645 0.9861 0.9479
1-samples 0.9744 0.9586 0.9745 0.9531
Average 0.9855 0.9612 0.9792 0.9566

Total Average 0.9706

Table A.2: SimpleCompare, (packet type, duration) pairs only

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9901 0.9882 0.9884 0.9531
2-samples 0.9882 0.9684 0.9861 0.9531
1-samples 0.9744 0.9625 0.9769 0.9115
Average 0.9842 0.9730 0.9838 0.9392

Total Average 0.9701

Table A.3: SimpleCompare combined.

A.1.2 MediumCompare Results

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9724 0.9606 0.9745 0.9062
2-samples 0.9783 0.9369 0.9630 0.8802
1-samples 0.9606 0.9408 0.9560 0.8281
Average 0.9704 0.9461 0.9645 0.8715

Total Average 0.9381

Table A.4: MediumCompare, duration values only

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9921 0.9684 0.9907 0.9635
2-samples 0.9901 0.9625 0.9884 0.9375
1-samples 0.9882 0.9546 0.9861 0.9427
Average 0.9901 0.9618 0.9884 0.9479

Total Average 0.9721

Table A.5: MediumCompare, (packet type, duration) pairs only

37

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9862 0.9842 0.9884 0.9375
2-samples 0.9862 0.9645 0.9792 0.9323
1-samples 0.9842 0.9527 0.9745 0.8750
Average 0.9855 0.9671 0.9807 0.9149

Total Average 0.9621

Table A.6: MediumCompare combined.

A.1.3 ComplexCompare Results

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9684 0.9448 0.9606 0.8906
2-samples 0.9704 0.9290 0.9560 0.8802
1-samples 0.9665 0.9349 0.9722 0.8698
Average 0.9684 0.9362 0.9629 0.8802

Total Average 0.9370

Table A.7: ComplexCompare, duration values only

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9744 0.9566 0.9722 0.8958
2-samples 0.9763 0.9507 0.9722 0.9062
1-samples 0.9803 0.9507 0.9931 0.9323
Average 0.9770 0.9527 0.9792 0.9114

Total Average 0.9551

Table A.8: ComplexCompare, (packet type, duration) pairs only

38

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9744 0.9606 0.9745 0.8854
2-samples 0.9744 0.9448 0.9745 0.8906
1-samples 0.9763 0.9448 0.9884 0.9115
Average 0.9750 0.9501 0.9791 0.8958

Total Average 0.9500

Table A.9: ComplexCompare combined.

A.1.4 BayesCompare Results

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9211 0.8698 0.9028 0.7396
2-samples 0.9191 0.8659 0.9051 0.7292
1-samples 0.9034 0.8639 0.8241 0.7031
Average 0.9145 0.8665 0.8773 0.7240

Total Average 0.8456

Table A.10: BayesCompare, duration values only

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9566 0.9329 0.9745 0.9375
2-samples 0.9566 0.9132 0.9745 0.8698
1-samples 0.9310 0.8935 0.8750 0.8125
Average 0.9481 0.9132 0.9413 0.8733

Total Average 0.9190

Table A.11: BayesCompare, (packet type, duration) pairs only

39

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9329 0.9290 0.9745 0.9375
2-samples 0.9310 0.9211 0.9745 0.9219
1-samples 0.9152 0.9172 0.8727 0.8229
Average 0.9264 0.9224 0.9406 0.8941

Total Average 0.9209

Table A.12: BayesCompare combined.

A.1.5 BayesCompare-Modified Results

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.3136 0.2643 0.2569 0.3229
2-samples 0.2959 0.2446 0.2593 0.3125
1-samples 0.2919 0.2485 0.2639 0.3646
Average 0.3005 0.2525 0.2600 0.3333

Total Average 0.2866

Table A.13: BayesCompare-modified, duration values only

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.9546 0.9191 0.9699 0.9219
2-samples 0.9487 0.9093 0.9699 0.8906
1-samples 0.9290 0.8817 0.9421 0.8542
Average 0.9441 0.9034 0.9606 0.8889

Total Average 0.9243

Table A.14: BayesCompare-modified, (packet type, duration) pairs only

40

lexie mixed–wrt54g mixed-AirPlus G–wrt54g
3-samples 0.7692 0.7416 0.8009 0.8281
2-samples 0.7318 0.7318 0.7870 0.7917
1-samples 0.6746 0.6982 0.7083 0.7396
Average 0.7252 0.7239 0.7654 0.7865

Total Average 0.7502

Table A.15: BayesCompare-modified combined.

A.1.6 Duration Analysis Results Summary

Metric dur type, dur combined
SimpleCompare 0.9393 0.9706 0.9701
MediumCompare 0.9381 0.9721 0.9621
ComplexCompare 0.9370 0.9551 0.9500
BayesCompare 0.8456 0.9190 0.9209
BayesCompare-modified 0.2866 0.9243 0.7502

Table A.16: Results summary

41

Appendix B

Implementation
Considerations

B.1 PCAP Creation for Duration Analysis

Pcaps created for this project were intentionally not generated by any sort of
highly automated process. Captures were created of all cards being powered on
and searching for a network before joining. After joining they loaded between
4 and 20 webpages. In one database (G–wrt54g) the capture was run explicitly
until 5000 packets had been received (representing the high end of data sam-
pled). The results generated were not significantly better than those databases
where the packet captures were stopped in an ad-hoc manner using less data.

The implications of these considerations is that the prints currently created are
not strictly representative of clients that are already associated to a network.
These prints best represent the behavior of clients around a small window of
time centered on them associating to a network. Though this period of time
is not very packet-intensive, a lot of important information is gleaned from the
duration values contained in the management frames that are exchanged. When
implementing this technique in the wild the best thing to do is probably only
examine packets exchanged within a window around client association. Merely
sampling packets once association has happened will not yield as diverse results.

42

Appendix C

Tool Usage

While implementing the algorithms outlined in the chapter 4, three impor-
tant tools were created, duration-print-generator, duration-print-matcher, and
duration-print-grader. This section gives an example of using these tools, as
well as how they work. duration-print-generator simply takes in an input pcap
and a MAC address, computes all the values outlined in the previous chap-
ters, and writes them out to disk (a .prnt file) duration-print-matcher takes
an input pcap, MAC address to fingerprint, and a set of previously computed
prints (the print database). It then computes the print for the input pcap and
finds the closest match. The following table shows the output of an example
duration-print-matcher run. In this case duration-print-matcher is attempting
to determine what implementation best maps to the card with the MAC ad-
dress 00:0a:95:f3:2f:ab in the 5-1-lexie.pcap, against all of the saved prints in the
print-db/lexie directory. The filename 5-1-lexie indicates that this pcap is the
first sample from implementation-id 5. duration-print-matcher mis-identifies
this pcap, as the correct implementation is not at the top of the list.

./duration-print-matcher -a 00:0A:95:F3:2F:AB -p

./print-db/lexie/pcaps/5-1-lexie.pcap -P ./print-db/lexie/

43

rank score ID model chipset driver
0 79.03 10 Broadcom-MiniPCI BCM4318 bcmwl5.sys
1 78.91 5 Apple-Airport Extreme BCM4318 AppleAirport2.kext
2 73.51 6 Zonet-ZEW1520 BCM4306 bcmwl5.sys
3 56.03 7 Intel-IPW220BG IPW2200BG w29n51.sys
4 54.74 13 Cisco-Aironet-350 Prism2 pcx500.sys
5 53.06 11 Sony-PSP unknown unknown
6 47.19 8 D-Link-dwl-g122 RA2570 rt2500usb.sys
7 39.95 4 Proxim-Orinoco Silver AR5212 ntpr11ag.sys
8 39.55 3 Proxim-Orinoco Silver AR5211 ntpr11ag.sys
9 39.47 2 Proxim-Orinoco Silver AR5212 ntpr11ag.sys
10 38.53 1 Linksys-WPC55AG AR5212 ar5211.sys
11 28.55 12 Nintendo-DS unknown unknown
12 22.61 9 SMC-2532W-B Prism2.5 smc2532w.sys

Table C.1: Sample output from duration-print-matcher

C.1 Duration-Print-Grader

duration-print-grader performs the same analysis as duration-print-matcher,
however it does it on a much larger scale. Every implementation included in a
database had 3 different captures taken of it associating to a network. duration-
print-grader takes all these pcaps, attempts to match them to the database of
prints on disk, and keeps track of the amount of error in terms of distance down
the sorted list the correct print for that pcap is found. A table representing the
output of duration-print-grader is below C.2.

44

ID s1 s2 s3 chipset, driver success rate
1 0 0 0 Atheros AR5212 ar5211.sys 39/39 (1.000)
2 0 0 1 Atheros AR5212 ntpr11ag.sys 38/ 39 (0.974)
3 0 0 2 Atheros AR5211 ntpr11ag.sys 37/ 39 (0.949)
4 2 0 0 Atheros AR5212 ntpr11ag.sys 37/ 39 (0.949)
5 1 1 0 Broadcom BCM4318 AppleAirport2.kext 37/ 39 (0.949)
6 0 0 0 Broadcom BCM4306 bcmwl5.sys 39/ 39 (1.000)
7 0 0 0 Intel IPW2200BG w29n51.sys 39/ 39 (1.000)
8 0 0 0 RaLink RA2570 rt2500usb.sys 39/ 39 (1.000)
9 0 0 0 Intersil Prism2.5 smc2532w.sys 39/ 39 (1.000)
10 0 0 0 Broadcom BCM4318 bcmwl5.sys 39/ 39 (1.000)
11 0 0 0 unknown unknown unknown 39/ 39 (1.000)
12 0 0 0 unknown unknown unknown 39/ 39 (1.000)
13 0 0 0 Intersil Prism2 pcx500.sys 39/ 39 (1.000)

Table C.2: output from: ./duration-print-grader -P ./print-db/lexie/

–num errors across DB: 7 success rate across DB: 12.820513 / 13 = 0.9862

Samples s1,s2,s3 refer to the three sample pcaps for a given implementation.
The first sample in the row for ID 5 corresponds to the previous example from
duration-print-matcher. This has value of 1 because the correct print was 1
deep in the list for sample 1.

The column on the right is the success rate of the specified algorithm for a single
implementation. It is computed using equation 5.1 which can be expressed as:

accuracy = (num implementations in db)∗(num samples)−misplacement distances
(num implementations in db)∗(num samples)

Where misplacement distance is the sum of the ranks for the three samples For
instance, for the airport extreme (implementation ID #5) we get the following
accuracy:

(13∗3)−2
13∗3 = 37

39 = 0.949

Chapter 6 covers the details, but by taking the weighted average of these in-
dividual success rates where the rate is the likelihood of seeing an implemen-
tation, we can compute a success rate across the entire database. When using
duration-print-grader the likelihood of seeing an implementation is constant,
and the individual success rates are all weighted equally. In the example above,
the success rate across the database turns out to be 12.805555 / 13 = 0.9850.

45

Appendix D

Comprehensive Device
Driver Information

The following table details all of the 802.11 implementations tested in this study.
Every implementation excluding the Apple Airport Extreme was test on Win-
dows XP SP2. The Airport card was tested on OSX 10.4.

ID MAC, model, chipset
files

files details

1 00:12:17:79:1C:B0
Linksys WPC55AG v1.2
Atheros AR5212

ar5211.sys Driver Date: 7/12/2004
Provider: Atheros
Communications
Inc/Linksys*. File
version 3.3.0.1561 Copy-
right 2001-2004 Atheros
Communications, Inc.
Signed: Microsoft
Windows Hardware
Compatability

2 00:20:A6:4C:D9:4A
Proxim Orinoco Sil-
ver 8481-WD Atheros
AR5212

ntpr11ag.sys Driver Date: 8/5/2004
Provider: Atheros Com-
munications Inc. File
version 3.1.2.219 Copy-
right 2001-2004 Atheros
Communications, Inc.
Signed: Microsoft
Windows Hardware
Compatability

46

3 00:20:A6:4B:DD:85
Proxim Orinoco Silver
8461-05 Atheros AR5211

same as above

4 00:20:A6:51:EC:09
Proxim Orinoco Sil-
ver 8471-WD Atheros
AR5212

same as above

5 00:0A:95:F3:2F:AB
Apple AirPort Extreme
Broadcom BCM4318

AppleAirport2-bcm4318 Version: 404.2

6 00:14:a5:06:8F:E6
Zonet ZEW1520 Broad-
com BCM-4306

BCMWL5.sys Driver Date: 1/23/2004
Provider: Broadcom.
File version 3.50.21.10
Copyright 1998-2003
Broadcom Corpora-
tion. Signed: Microsoft
Windows Hardware
Compatability

7 00:0E:35:E9:C9:5B
Intel PRO/Wireless
2200BG

w29n51.sys W29NCPA.dll
W29MLRes.dl Driver
Date: 9/12/2005
Provider: intel File
Version: 9003-9 Driver
Copyright: Intel 2004
Signed: Microsoft
Windows Hardware
Compatability

8 00:13:46:E3:B4:2C
D-Link dwl-g122 Ralink
RA2570

rt2500usb.sys Driver Date: 4/1/2004
Provider: D-
Link/Ralink Driver
Version: 1.0.0.0 Signed:
Microsoft Windows
Hardware Compatability

9 00:04:E2:80:2C:21
SMC 2532W-B Prism 2.5

smc2532w.sys Driver Date: 10/20/2003
Provider: SMC Driver
Version: 3.1.3.0 Copy-
right: 2003 SMC Net-
works, Inc. Signed: No.

47

10 00:14:A4:2A:9E:58
Broadcom 802.11g
miniPCI BCM4318

bcmwl5.sys Driver Date: 12/22/2004
Provider: Broad-
com Driver Version:
3.100.46.0 Copyright:
1998-2004, Broadcom
Corporation. Signed:
Microsoft Windows
Hardware Compatability

11 00:14:A4:7f:84:67 Sony
PSP

unknown PSP firmware version
2.50

12 00:09:BF:9D:59:C9 Nin-
tendo DS

unknown NA

13 00:0D:29:02:44:B8
Cisco aironet-350

pcx500.sys Driver Provider: Mi-
crosoft Driver Date:
7/1/2001 Driver Version:
7.29.0.0 Digital Signer:
Microsoft Windows
Publisher

14 00:0E:35:E9:C9:5B
Intel PRO/Wireless
2200BG

w29n51.sys Netw2c32.dll Netw2r32.dll Driver Date: 6/26/2006
Provider: intel File Ver-
sion: 9.0.4.17 Copyright:
Intel 2004 Signed: Mi-
crosoft Windows Hard-
ware Compatibility

48

Bibliography

[1] IEEE Wireless LAN Edition. A compilation based on IEEE Std 802.11-1999
(R2003) and its amendments, IEEE Press, 2003.

[2] IEEE std. 802.11, standards for local and metropolitan area networks. 1999.

[3] WiFi (Wireless Fidelity): http://www.wi-fi.org

49

	Foreword
	Introduction
	Why Fingerprint 802.11?
	What is 802.11?
	Finding an 802.11 Fingerprint
	Organization of Paper

	Carrier Sensing in the 802.11 MAC
	802.11 Basics
	Physical and Virtual Carrier Sense

	Statistical Analysis of Duration Field
	What is in a Print Database?
	The Duration Matching Algorithm
	SimpleComparison Metric
	MediumCompare Metric
	ComplexCompare Metric
	BayesCompare Metric
	Modified BayesCompare Metric

	Results
	SimpleCompare
	MediumCompare
	ComplexCompare
	BayesCompare
	Modified BayesCompare
	Results Summary

	Conclusions and Future Work
	Other Matching Metrics
	Future Work - MAC vs. PHY Fingerprinting

	Complete Results
	Duration Analysis Results
	SimpleCompare Results
	MediumCompare Results
	ComplexCompare Results
	BayesCompare Results
	BayesCompare-Modified Results
	Duration Analysis Results Summary

	Implementation Considerations
	PCAP Creation for Duration Analysis

	Tool Usage
	Duration-Print-Grader

	Comprehensive Device Driver Information

