Can you find me now?

Unlocking the Verizon Wireless xv6800 (HTC Titan) GPS

10/2008

Skywing
skywing_uninformed@valhallalegends.com

Contents
1 Foreword 2
2 Introduction 2

3 Overview of Protection Mechanisms 4
3.1 Firmware-based Protection Mechanisms 4
3.1.1 Application Authorization via Challenge-response 6

3.1.2 Location Information Encryption 8

3.1.3 VZ Navigator (Application-level) Protection Mechanisms 9

4 Opening gpsOne on the xv6800 to Third-party Applications 10

4.1 Examining gpsOne Driver Interactions 11
4.2 Implementing a Custom oemgpsOne.dll client 12
4.3 Multiplexing GPS Across Multiple Applications 13
4.4 CaveatS e e 14
5 Bugs in the Verizon Wireless xv6800 gpsOne Lock Down Logic 14
5.1 Thread Safety Issues 14
5.2 APIMis-use o o i e 14
6 Suggested Countermeasures 16

7 Debugging and Development Challenges on Windows Mobile

and the xv6800 17
7.1 Limitations of the Visual Studio Debugger 18
7.2 Limitations of the IDA Pro 5.1 Debugger 18
7.3 Replacing a Firmware-baked Execute-in-place Module 18
7.4 Import Address Table Hooking Limitations 19
8 Conclusion 20

1 Foreword

Abstract: In August 2008 Verizon Wireless released a firmware upgrade for
their xv6800 (rebranded HT'C Titan) line of Windows Mobile smartphones that
provided a number of new features previously unavailable on the device on the
initial release firmware. In particular, support for accessing the device’s built-
in Qualcomm gpsOne assisted GPS chipset was introduced with this update.
However, Verizon Wireless elected to attempt to lock down the GPS hardware
on xv6800 such that only applications authorized by Verizon Wireless would be
able to access the device’s built-in GPS hardware and perform location-based
functions (such as GPS-assisted navigation). The mechanism used to lock down
the GPS hardware is entirely client-side based, however, and as such suffers from
fundamental limitations in terms of how effective the lock down can be in the
face of an almost fully user-programmable Windows Mobile-based device. This
article outlines the basic philosophy used to prevent unauthorized applications
from accessing the GPS hardware and provides a discussion of several of the flaws
inherent in the chosen design of the protection mechanism. In addition, several
pitfalls relating to debugging and reverse engineering programs on Windows
Mobile are also discussed. Finally, several suggested design alterations that
would have mitigated some of the flaws in the current GPS lock down system
from the perspective of safeguarding the privacy of user location data are also
presented.

2 Introduction

The Verizon Wireless xv6800 (which is in and of itself a rebranded version of the
HTC Titan, with a carrier-customized firmware loadout) is a recently released
Windows Mobile-based smartphone. A firmware update released during August
2008 enabled several new features on the device. For the purposes of this article,
the author has elected to focus on the embedded Qualcomm gpsOne chipset,
which provides assisted GPS facilities to applications running on the device.

With the official firmware upgrade (known as MR1), the assisted GPS support
on the device, which had previously remained inaccessible when using carrier-
supported firmware, was activated, albeit with a catch; only applications that
were approved by Verizon Wireless were able to access the built-in GPS hard-
ware present on the device. Although third-party applications could access an
externally connected (for example, Bluetooth-enabled) GPS device, the Qual-
comm gpsOne chipset embedded in the phone itself remained inaccessible. Co-
inciding with the public release of the xv6800 MRI1 firmware, Verizon Wireless
also began making available a subscription-based application (called ”VZ Navi-
gator”), which provides voice-based turn-by-turn navigation on the xv6800 via
the usage of the device’s built-in GPS hardware.

There have been a variety of third-party firmware images released for the xv6800
that mix-and-match portions of official firmware releases from other carriers sup-
porting their own rebranded versions of xv6800 (HTC Titan). Some of these
custom firmware images enable access to the gpsOne hardware, albeit with
several caveats. In particular, until recently, assisted GPS mode, wherein the
cellular network aids the device in acquiring a GPS fix, was not available on
Verizon Wireless’s network with custom firmware images; only standalone GPS
mode (which requires waiting for a ”cold lock” on three GPS satellites, a pro-
cess that may take many minutes after device boot) was enabled. In addition,
installing these custom firmware images requires patching out a signature check
in the software loader on the device. This procedure may be considered danger-
ous if one wishes to retain hardware warranty support (which may be desirable,
given the steep unsubsidized cost of the device).

Furthermore, should one install the official Verizon Wireless MR1 firmware up-
grade, the gpsOne hardware on the device would remain locked down even if
one switched to a currently available third-party firmware images. This is likely
due to a sticky setting written to the firmware during the carrier provisioning
process at the completion of the MR1 firmware upgrade. As the presently avail-
able third-party ROM images do not wipe the area of the device’s firmware
which seems to control the GPS hardware’s lockdown state, it becomes difficult
to unlock the GPS hardware after having upgraded to the MR1 firmware image.
A lengthy process is available to undo this change, but it involves the complete
reset of most provisioning settings on the device, such that the phone must be
partially manually reprovisioned, as opposed to utilizing the over-the-air provi-
sioning support.

Given the downsides of relying on custom firmware images for enabling the
built-in GPS hardware on the xv6800, the official firmware release does pose a
reasonable attraction. However, the locking down of the GPS hardware to only
Verizon Wireless authorized applications is undesirable should one wish to use
third-party location-enabled applications with the built-in GPS hardware, such
as Google Maps or Microsoft’s Live Search.

Verizon Wireless indicates that third-party application usage of the GPS hard-
ware on their devices is subject to Verizon Wireless-dictated policies and procedures[1].
In particular, the security of user location information is often cited[2] as a rea-
son for requiring location-enabled applications to be certified by Verizon Wire-
less. Unfortunately, the mechanism deployed to lock built-in GPS hardware on
the xv6800 provides very little in the way of true security against third-party
programs (malicious or otherwise) from accessing location information. In fact,
given Windows Mobile 6’s lack of "hard” process isolation, it is questionable
as to whether it is even technically feasible to provide a truly secure protection
mechanism on a device that allows user-supplied programs to be loaded and
executed.

While there may be golden intentions in attempting to protect users from ma-

licious programs designed to harvest their location information on-the-fly, the
protection system as implemented to control access to the gpsOne chipset on the
xv6800 is unfortunately relatively weak. This is at odds with Verizon Wireless’s
stated goals of attemting to protect the security of a user’s location information,
and thus may place users at risk.

3 Overview of Protection Mechanisms

There are multiple levels of protection mechanisms built-in to both the MR1
firmware image for the xv6800, as well as the GPS-enabled subscription VZ Nav-
igator software that Verizon Wireless supports as the sole officially sanctioned
location-based application (at the time of this article’s writing). The protection
mechanisms can be broken up into those that exist on the device firmware itself,
and those that exist in the VZ Navigator software.

3.1 Firmware-based Protection Mechanisms

The MRI1 firmware provides the underlying foundation of the built-in GPS hard-
ware lockdown logic. There are several built-in software components that are
"baked into” the firmware image and support the GPS lockdown system. The
principle design underpinning the firmware-based protection system, however,
is a fairly run of the mill security-through-obscurity based approach. In par-
ticular, GPS location information obtained by the built-in gpsOne hardware
(specifically, latitude and longitude) is encrypted. Only programs that under-
stand how to decrypt the position information are able to make sense of any
data returned by the gpsOne chipset.

Furthermore, in order to initiate a location fix via the built-in gpsOne hardware,
an application must continually answer correctly to a series of challenge-response
interactions with the gpsOne chipset driver (and thus the radio firmware on the
device). The reason for implementing both a challenge-response mechanism as
well as obfuscating the actual GPS location will become apparent after further
discussion.

The firmware-based protected gpsOne interface has several constituent layers,
with supporting code present at radio-firmware level, kernel driver level, and
user mode application level.

At the lowest level, the radio firmware for the device chipset would appear to
have a hand in obfuscating returned GPS positioning data. This assumption
is logically based on a strings dump of radio firmware images indicating the
presence of AES-related calls in GPS-related code (AES is used to encrypt the
returned location information), and the fact that switching to a custom firmware

image after installing the MR1 update does not re-enable the plaintext gpsOne
interface).

Between the radio firmware (which executes outside the context of Windows
Mobile) and the OS itself, there exists a kernel mode Windows Mobile driver
known as the GPS intermediate driver. This module (gpsid_qct.dll) provides an
interface between user mode callers and the GPS hardware on the device. It also
provides support for multiplexing a single piece of GPS hardware across multiple
user mode applications concurrently (a standard feature of Windows Mobile’s
GPS support). However, Verizon Wireless has broken this support with the
locked down GPS logic that has been placed in the xv6800’s implementation of
the GPS intermediate driver.

Beneath the GPS intermediate driver, there are two different interfaces that
are supported for the collection of location data on Windows Mobile-based
devices[4]. The first of these is an emulated serial port that is exposed to user
mode, and implements a standard NMEA-compatible text-based interface for
accessing location information. This interface has also been broken by the GPS
intermediate driver used by Verizon Wireless on the xv6800, for reasons that
will become clear upon further discussion.

The second interface for retrieving location information via the GPS interme-
diate driver is a set of IOCTLs implemented by the GPS intermediate driver
to retrieve parsed (binary) GPS data from the currently-active GPS hardware
(returned as C-style structures). User mode callers do not typically call these
IOCTLs directly from their code, but instead indirect through a set of thin C
API wrappers in a system-supplied module called gpsapi.dll. This interface is
also broken by the GPS lockdown logic in the GPS intermediate driver, although
an extended version of this IOCTL-based interface is used by GPS-enabled ap-
plications that support the locked down mode of operation on the xv6800.

Verizon Wireless ships a custom module parallel to gpsapi.dll on the xv6800,
named oemgpsOne.dll. This module exports a superset of the APIs provided
by the standard gpsapi.dll (although there are slight differences in function
names). Additionally, new APIs (which are, as in gpsapi.dll, simply thin wrap-
pers around IOCTL requests sent to the GPS intermediate driver) are provided
to manage the challenge-response and encrypted GPS location aspects of the
gpsOne lockdown system present on the xv6800. Through correct usage of the
APIs exported by oemgpsOne.dll, a program with knowledge of the GPS lock
down system can retrieve valid positioning data from the gpsOne chipset on the
device.

Applications that are approved by Verizon Wireless for location-enabled opera-
tion make calls to a library developed by Verizon Wireless and Autodesk, named
LBSDriver.dll, which is itself a client of oemgpsOne.dll. LBSDriver.dll and its
security measures are discussed later, along with VZ Navigator.

3.1.1 Application Authorization via Challenge-response

In order to activate the gpsOne hardware on the xv6800 and request a GPS lo-
cation fix, an application must receive a challenge data block from the gpsOne
driver and perform a secret transform on the given data in order to create a
well-formed response. Until this process is completed, the gpsOne hardware will
not attempt to return a location fix. Furthermore, a location-enabled applica-
tion using the built-in gpsOne hardware must continually complete additional
challenge-response sequences (using the same underlying algorithms) as it con-
tinues to acquire updated location fixes from the gpsOne hardware.

The first step in connecting to the GPS intermediate driver to retrieve valid
position information is to open a handle to a GPS intermediate driver instance.
This is accomplished with a call to an oemgpsOne.dll export by the name of oG-
PSOpenDevice. The parameters and return value of this function are analogous
to the standard Windows Mobile GPSOpenDevice routine[5].

HANDLE
oGPSOpenDevice (

__in HANDLE NewLocationData,
in HANDLE DeviceStateChange,
in const WCHAR *DeviceName,
in DWORD Flags

);

After a handle to the GPS intermediate driver instance is available, the next
step in preparing for the challenge-response sequence is to issue a call to a sec-
ond function implemented by oemgpsOne.dll, named oGPSGetBaseSSD. This
routine returns a session-specific blob of data that is later used in the challenge-
response process. In the current implementation, the returned blob appears to
always contain the same data across every invocation.

DWORD

0GPSGetBaseSSD(
__in HANDLE Device,
__out unsigned char *Buf, // sizeof = 0x10
__out unsigned long *BufLength, // 0x10
__out unsigned short *Buf2 // sizeof = 0x10
);

Next, the GPS intermediate driver must be provided with a valid event handle
to signal when a new challenge cycle has been requested by the driver. This is
accomplished via a call to the oGPSEnableSecurity function in oemgpsOne.dll.

DWORD

oGPSEnableSecurity (
__in HANDLE Device,
__in HANDLE SecurityChangeEvent
)5

After the session-specific blob has been retrieved, and an event handle for new
challenge requests has been provided to the GPS intermediate driver, the next
step is to receive a challenge block from the GPS intermediate driver and com-
pute a valid response. The application must wait until the GPS intermediate
driver signals the challenge request event before requesting the current challenge
data block. Once the driver signals the event that was passed to oGPSEnableSe-
curity, the application must execute one challenge-response cycle.

Challenge data blocks are retrieved from the gpsOne driver via a call to a routine
exported from oemgpsOne.dll, named oGPSReadSecurityConfig. As per the
prototype, this routine takes a handle to the GPS intermediate driver instance,
and returns a blob of data used to generate a challenge response.

DWORD

oGPSReadSecurityConfig(
__in HANDLE Device,
__out unsigned char *Buf // On return, Ox4 + 1 + 1 + Buf[0x6] (max length Oxlc
);

After the challenge data blob has been retrieved via a call to oGPSReadSe-
curityConfig, the GPS lockdown-aware application must perform a series of
secret transformations on it before indicating a companion response blob down
to the GPS intermediate driver. The transformation function consists of some
bit-shuffling of the challenge blob, followed by a SHA-1 hash of the shuffled
challenge blob concatenated with the session-specific data blob. This process
yields the bulk of the response data less a two-byte header that is prepended
prior to indication down to the GPS intermediate driver.

The process of sending the computed challenge-response is accomplished via a
call to another function in oemgpsOne.dll, by the name of oGPSWriteSecurity-
Config.

DWORD
oGPSWriteSecurityConfig(
__in HANDLE Device,
__in unsigned char *Buf // 0x1C

);

The GPS intermediate driver will continue to periodically challenge the appli-
cation while it requests updated position fixes from the gpsOne chipset. This
is accomplished by signaling the event passed to oGPSEnableSecurity, which
indicates to the application that it should retrieve a new challenge and create a
new response, using the mechanism outlined above.

total)

3.1.2 Location Information Encryption

Without passing the challenge-response scheme previously described, the GPS
intermediate driver will refuse to return a set of position information from the
gpsOne hardware. Even after the challenge-response system has been imple-
mented, however, a secondary layer of security must be addressed. This secu-
rity layer takes the form of the encryption of the latitude and longitude values
returned by the gpsOne chipset.

While this second layer of security may appear superfluous at first glance, there
exists a valid reason for it. Recall that the GPS intermediate driver multiplexes
a single piece of GPS hardware across multiple applications. In the implemen-
tation of the current GPS intermediate driver for the xv6800, the challenge-
response scheme appears to map directly to the gpsOne chipset itself.

Thus, once a single program has passed the challenge-response mechanism, and
as long as that program continues to respond correctly to challenge-response
requests, any program on the system can call any of the standard Windows
Mobile GPS interfaces to retrieve location data. This presents the obvious
security hole wherein a Verizon Wireless-approved GPS application is started,
and then a third-party application using the standard Windows Mobile GPS
API is loaded, in effect ”piggy-backing” on top of the challenge-response code
residing in the approved application to allow access to the embedded gpsOne
hardware.

For reasons unclear to the author, the designers of the GPS lockdown system
did not choose to simply disable GPS requests not associated with the program
that has passed the challenge-response scheme. Instead, a different approach is
taken, such that the GPS intermediate driver encrypts the location information
that it returns via either serial port or gpsapi.dll interfaces.

In order to make sense of the returned latitude and longitude values, a program
must be able to decrypt them. While the GPS intermediate driver provides
the decryption key in plaintext equivalent to any program that knows how to
request it, this information is not available to clients of the standard Windows
Mobile NMEA-compatible virtual serial port or gpsapi.dll interfaces. Aside
from latitude and longitude data, however, all other information returned by
the standard Windows Mobile GPS interface is unadulterated and valid (this
includes altitude and timing information, primarily).

Thus, the first step to decoding valid position values is to call an extended
version of the standard Windows Mobile GPSGetPosition routine[6]. This
extended routine is named oGPSGetPosition, and it, too, is implemented in
oemgpsOne.dll. The prototype matches that of the standard GPSGetPosition,
although an extended version of the GPS_POSITION structure containing addi-
tional information (including a blob needed to derive the decryption key required
to decrypt the longitude and latitude values) is returned.

DWORD
0GPSGetPosition(
__in HANDLE Device,
__out PGPS_POSITION GPSPosition,
__in DWORD MaximumAge,
__in DWORD Flags
);

Decryption of the latitude and longitude information is fairly straight- forward,
involving a transform (via the same transformation process described previ-
ously) of the challenge data returned as a part of the extended GPS_POSITION
structure. This yields an AES key, which is imported into a CryptoAPI key ob-
ject, and then used in ECB mode to decrypt the latitude and longitude values.

Once decryption is complete, a scaling factor is then applied to the resultant
coordinate values, in order to bring them in line with the unit system used by
the standard Windows Mobile GPS interfaces.

3.1.3 VZ Navigator (Application-level) Protection Mechanisms

While many parts of the GPS lockdown system are implemented by radio
firmware- level, or kernel mode-level code, portions are also implemented in user
mode. An approved Verizon Wireless application accesses location information
by calling through a module developed by Verizon Wireless and Autodesk, and
named LBSDriver.dll. In an approved application, it is the responsibility of
LBSDriver.dll to communicate with the GPS intermediate driver via oemgp-
sOne.dll, and implement the challenge-response and position decryption func-
tionality. LBSDriver.dll then exports a subset of the standard Windows Mobile
gpsapi.dll (with several custom additions), for usage by approved programs on
the xv6800.

Additionally, LBSDriver.dll implements a user-controlled privacy policy on top
of the gpsOne hardware. The user is allowed to specify at what times of day
a particular program can access location information, and whether the user is
prompted to confirm the request. The privacy policy configuration process is
driven via a dialog box (implemented and created by LBSDriver.dll) that is
shown on the device the first time an application runs, and subsequently via
a Verizon Wireless-operated web site[7]. Privacy policy settings are obfuscated
and stored in the registry, keyed off of a hash of the calling program’s main
process image fully-qualified filename.

Because LBSDriver.dll is a standard, loadable DLL, it is vulnerable to being
loaded by untrusted code. There are several defenses implemented by the LB-
SDriver module which attempt to deter third-party programs that have not
been approved by Verizon Wireless from successfully loading LBSDriver.dll and
subsequently using it to access location information.

The first such protection embedded into LBSDriver.dll is a digital signature
check on the main process executable corresponding to any program that at-
tempts to load LBSDriver.dll. This check is ultimately triggered when the
GPSOpenDevice export on LBSDriver.dll is called. Specifically, the calling pro-
cess module is confirmed to be signed by a custom certificate. If this is not the
case, then an error dialog is shown, and the GPSOpenDevice request is denied.
This check is based on calling GetModuleFileName(NULL, ...)[8] to retrieve the
path to the main process image, which is then run through the aforementioned
signature check.

Additionally, LBSDriver.dll also connects to an Autodesk-operated server in
order to determine if the calling program is authorized to use LBSDriver.dll.
In addition to verifying that the calling program is approved as a GPS-enabled
application, the Autodesk-operated server also appears to indicate back to the
client whether or not the user’s account has been provisioned for a subscription
location-enabled application, such as VZ Navigator. A program hoping to utilize
LBSDriver.dll must pass these checks in order to successfully acquire a location
fix using the built-in gpsOne hardware.

The Autodesk-operated server also provides configuration information (such as
Position Determining Entity (PDE) addresses) that is later used in the assisted
GPS process. However, this configuration information appears to be more or
less static, at least for the critical portions necessary to enable assisted GPS, and
can thus be cached and reused by third-party programs without even needing
to go through the Autodesk server.

4 Opening gpsOne on the xv6800 to Third-party
Applications

Understanding the protection mechanisms that implement the locking down
of the built-in GPS hardware is only part of the battle to enable third-party
GPS-enabled programs to operate on the xv6800. Undocumented functions in
oemgpsOne.dll with no equivalent in the standard Windows Mobile gpsapi.dll,
and various quirks of Windows Mobile itself preclude a straightforward imple-
mentation to unlock the GPS for third-party programs.

Furthermore, third-party GPS-enabled programs are written to one (or com-
monly, both) of the standard Windows Mobile GPS interfaces. Because these
interfaces are disabled on the xv6800, a solution to adapt third-party programs
to the locked down GPS interface would be required (in lieu of modifying ev-
ery single third-party application to support the locked down GPS interface).
As many of these third-party applications are closed-source and frequently up-
dated, any solution that required direct modification of a third-party program
would be untenable from a maintenance perspective.

10

The solution chosen was to write an emulation layer for the standard Windows
Mobile gpsapi.dll interface, which translates standard gpsapi.dll function calls
into requests compatible with the locked down GPS interface.

4.1 Examining gpsOne Driver Interactions

The first step in implementing a layer to unlock the gpsOne hardware on the
xv6800 involves discovering the correct sequence of oemgpsOne.dll calls (and
thus calls to the GPS intermediate driver, as oemgpsOne.dll is merely a thin
wrapper around IOCTL requests to the GPS intermediate driver, for the most
part, with some minor exceptions).

The standard way that this would be done on a Windows-based system would be
to run VZ Navigator under a debugger, but there exist several complications that
prevent this from being an acceptable solution for monitoring oemgpsOne.dll
requests.

First, the assisted GPS functionality of the gpsOne hardware requires that the
device be connected to the cellular network, and operating with it as the default
gateway, as a connection to a carrier-supplied server (known as a ”Position De-
termining Entity”, or PDE) must be made. The PDE servers that are operated
by Verizon Wireless are firewalled off from outside their network, and in addi-
tion, it is possible that they use the IP address assigned to the user making a
request for location assistance purposes.

Unfortunately, the debugger connection to a Windows Mobile-based device, for
all the Windows Mobile debuggers that the author had access to (IDA Pro 5.1
and the Visual Studio 2005 debugger) require an ActiveSync link. While the
ActiveSync link is enabled, it supersedes the cellular link for data traffic. Even
when the computer on the other end of the ActiveSync link was connected to
the cellular network via a separate cellular modem, the GPS functionality did
not operate, due to an apparent check of whether the cellular link is the most-
precedent data link on the device.

This means that observing much of the oemgpsOne.dll calls relating to position
fixes would not be possible with the standard debugging tools available. The
solution that was implemented for this problem was to write a proxy DLL that
exports every symbol exported by oemgpsOne.dll, logs the parameters of any
such API calls, and then forwards them on to the underlying oemgpsOne.dll
implementation (logging return values and out parameters after the actual im-
plementation function in question returned).

While potentially labor-intensive, in terms of creating the proxy DLL, such a
technique is relatively simple on Windows. The usual procedure for such a task
would be to create the proxy DLL, place it in the directory containing the main
process image of the program to be hooked, and then load the real DLL with a

11

fully-qualified path name from inside the proxy DLL.

Unfortunately, Windows Mobile does not allow two DLLs with the same base
name to be loaded, even if a fully-qualified path is specified with a call to
LoadLibrary. Instead, the first DLL that happened to get loaded by any process
on the entire system matching the requested base name is returned. This means
that in order to load a proxy DLL, one of two approaches would need to be taken.

The first such option is to rename the the proxy DLL itself, along with the
filename of the imported DLL in the desired target module, by modifying the
actual desired target module itself on-disk. The second option is to rename
the DLL containing the implementation of the proxied functionality, and then
load that DLL by the altered name in the proxy DLL. Both approaches are
functionally equivalent on Windows Mobile; the author chose the former in this
case.

Through disassembly, a rough estimate of the prototypes of the various APIs
exported by oemgpsOne.dll was created, and from there, a proxy module (oemg-
psOneProxy.dll) was written to log specific APT calls to a file for later analysis.
This approach allowed for relatively quick identification of any arguments to
oemgpsOne.dll calls which were not immediately obvious from static disassem-
bly, despite the lack of a debugger on the target when many of the calls were
made.

4.2 Implementing a Custom oemgpsOne.dll client

After discerning the prototypes for the various oemgpsOne.dll supporting APIs,
the next step in unlocking the built-in GPS hardware on the xv6800 was to
write a custom client program that utilized oemgpsOne.dll to retrieve decrypted
location values from the gpsOne chipset.

Although one approach to this task might be to attempt to disable the various
security checks present in LBSDriver.dll, it was deemed easier to re-implement
an oemgpsOne.dll client from scratch. In addition, this approach also allowed
the author to circumvent various implementation bugs and limitations present
in LBSDriver.dll.

Given the information gleaned from analyzing LBSDriver.dll’s implementation
of the challenge-response and GPS decryption logic, and the API call logging
from the oemgpsOne.dll proxy module, writing a client for oemgpsOne.dll is
merely an exercise in writing the necessary code to connect all of the pieces
together in the correct fashion.

After valid GPS position data can be retrieved from oemgpsOne.dll, all that
remains is to write an adapter layer to connect programs written against the
standard Windows Mobile gpsapi.dll to the custom oemgpsOne.dll client.

12

However, there are inherent design limitations in the locked down GPS interface
that complicate the creation of a practical adapter to convert gpsapi.dll calls into
oemgpsOne.dll calls. For example, a naive implementation that might involve
creating a module to replace gpsapi.dll with a custom binary to make inline
calls to oemgpsOne.dll would run aground of a number of pitfalls.

Specifically, as oemgpsOne.dll depends on gpsapi.dll, attempting to simply re-
place gpsapi.dll with a custom module will break the very oemgpsOne.dll func-
tionality used to communicate with the GPS intermediate driver, due to the pre-
viously mentioned ”one dll for a given base name” Windows Mobile limitation.
In addition, it is not possible for two programs to simply simultaneously oper-
ate full clients of oemgpsOne.dll, as the challenge-response mechanism operates
globally and will not operate correctly should two applications simultaneously
attempt to engage it.

The most straightforward solution to the former issue is to simply rename a copy
of the stock gpsapi.dll, and then modify oemgpsOne.dll to refer to the renamed
gpsapi.dll. This opens the door to replacing the system-supplied gpsapi.dll with
a custom replacement gpsapi.dll implementing a client for oemgpsOne.dll.

4.3 Multiplexing GPS Across Multiple Applications

The GPS intermediate driver supports multiplexing the GPS hardware present
on a Windows Mobile-based device across multiple applications. However, as
previously noted, the locked down GPS interface breaks this functionality, as no
two programs can participate in the full challenge-response protocol for keeping
the gpsOne hardware active simultaneously.

Although the first program to start could be designated the "master”, and
thus be responsible for challenge-response operations (with secondary programs
merely decrypting position data locally), this introduces a great deal of extra
complexity. Specifically, significant coordination issues arise relating to cleanly
handling the fact that third-party GPS-enabled programs are typically unaware
of each other. Thus, work must be done to handle the case where one program
having previously activated the gpsOne hardware exits, leaving any remaining
programs still using GPS with the problem of selecting a new ”master” program
to perform challenge-responses with the GPS intermediate driver.

Given the difficulties of such an approach, a different model was chosen, such
that the replacement gpsapi.dll acts as a client of a server program which then
mediates access to the locked down GPS interface on behalf of all active GPS-
enabled programs. Although there exist synchronization and coordination issues
with this model, they are simpler to deal with than the alternative implemen-
tation.

13

4.4 Caveats

While the resultant GPS adapter system supports third-party programs that
utilize gpsapi.dll, any programs using the virtual NMEA serial port interface
will not operate successfully. Unfortunately, the same approach towards the
replacement of gpsapi.dll is not feasible with the APIs utilized in communication
with a serial port, by virtue of the sheer number of function calls present in
coredll.dll that would need to be forwarded on to the real coredll.dll via a proxy
module.

5 Bugs in the Verizon Wireless xv6800 gpsOne
Lock Down Logic

Few programs designed to lockdown portions of a system via security through
obscurity are bug-free, and the GPS lockdown logic on the xv6800 is certainly
no exception. The lockdown code has a number of localized and systemic issues
pervading the current implementation.

5.1 Thread Safety Issues

There are a number of threading related issues present throughout the locked
down GPS interface.

e The GPS intermediate driver does not properly synchronize the case of
multiple simultaneous callers using the extended IOCTLs not present on
a stock GPS intermediate driver implementation.

e LBSDriver.dll utilizes a dedicated thread for performing challenge-response
processing with the GPS intermediate driver. However, there is no syn-
chronization provided between the challenge-response thread and the thread
that retrieves and decrypts GPS position data, leading to a race condition
in which it might be possible for decryption to return garbage data.

5.2 API Mis-use
In several cases, LBSDriver.dll fails to use standard Windows APIs correctly.

e LBSDriver.dll performs dangerous operations in DIIMain, such as loading
other DLLs, despite such operations being long-documented as blatantly
illegal and prone to difficult to diagnose deadlocks (particularly on a device
with extremely limited debugging support).

14

e When LBSDriver.dll performs the AES decryption on the latitude /longitude
values returned by oemgpsOne.dll, it creates a CryptoAPI key blob, in or-
der to import the derived AES key into a CryptoAPI key object (via the
use of the CryptImportKey routine). However, the length of the key blob
passed to CryptlmportKey is actually too short. This would appear to
make LBSDriver.dll seemingly dependent on a bug in the Windows Mo-
bile 6 implementation of CryptoAPI. Specifically, the key blob format for
a symmetric key includes a count in bytes of key material, and the data
passed to CryptlmportKey is such that the key blob structure claims to
extend beyond the length of bytes that LBSDriver.dll specifies for the key
blob structure itself. It might even be the case that this represents a
security problem in CryptoAPI due to apparently non-functional length
checking in this case, as key blobs are documented to be transportable
across an untrusted medium.

To illustrate second issue, consider the following code fragment:

//
// Initialize the header.

//

BlobHeader = (BLOBHEADER *)KeyBlob;

BlobHeader->bType = PLAINTEXTKEYBLOB;
BlobHeader->bVersion = 2;
BlobHeader->reserved = 0;

BlobHeader->aiKeyAlg = CALG_AES_128;

//

// Initialize the key length in the BLOB payload.
//

* (DWORD *) (&KeyBlob[0x08]) = KeyLength;

//
// Initialize the key material in the BLOB payload.
//

memcpy (KeyBlob + 0xOC, KeyData, KeyLength);

//
// Generate a CryptoAPI AES-128 key object from our key material.

//

if (!CryptImportKey(
CryptProv,
KeyBlob,
KeyLength, // BUGBUG: Should really be KeyLength + 0xOC...
NULL,
0,
&Key))

15

break;

}

Contrary to the Microsoft-supplied documentation[9] for CryptImportKey, the
third parameter passed to CryptImportKey (”dwDataLen”, as ”KeyLength” in
this example) is too short for the key blob specified, as the length field in the
blob header itself describes the key material as being ”KeyLength” bytes. Thus,
the LBSDriver.dll module would appear to depend upon either CryptoAPI or
the default Microsoft cryptographic provider on Windows Mobile not validating
blob header key material lengths properly, as the supplied blob header claims
that the key material extends outside the provided blob buffer (given the length
passed to CryptImportKey).

Microsoft-supplied sample code[10] illustrates the correct construction of a sym-
metric key blob, and does not suffer from this deficiency.

6 Suggested Countermeasures

Although several attempts were made throughout the GPS lockdown system
on the xv6800 to deter third party programs from successfully communicating
with the integrated gpsOne hardware, the bulk of these checks were relatively
easy to overcome. In fact, the principle barriers to the GPS unlocking projects
were a lack of viable debugging tools for the platform, and an unfamiliarity with
Windows Mobile on the part of the author.

Nevertheless, several improvements could have been made to improve the re-
silience of the lockdown system.

e Deny assisted GPS availability at the PDE if the user’s account is not pro-
visioned for GPS, or if the privacy policy configured time of day restrictions
are not met. Because the security and lockdown checks are implemented
client-side on the xv6800, they are relatively easily bypassable by third
party applications. However, if the device is capable of performing a stan-
dalone GPS location fix, blocking assisted GPS access will not provide a
hard defense.

e Require code signing from a Verizon Wireless CA for all applications
loaded on the device. Users are, however, unlikely to purchase a device
configured in such a matter, as expensive smartphone-class devices are
often sold under the expectation that third party programs will be easily
loadable.

e Moving enforcement checks for operations such as time of day requirements
for the user’s desired location privacy policy into the radio firmware and

16

out of the operating system environment. The radio firmware environ-
ment is significantly closer to a ”black box” than the operating system
which runs on the application core of the xv6800. Furthermore, if the
software loader on the xv6800 were secured and locked down, the ra-
dio firmware could be made significantly more proof against unauthorized
modifications. One could envision a system wherein the radio firmware
communicates with the carrier’s network out-of-band (with respect to the
general-purpose operating system loaded on the device) to determine when
it had been authorized by the user to provide location information to ap-
plications running on the device.

The client-side checks on the GPS lockdown system are likely a heritage of
the fact that VZ Navigator and LBSDriver.dll appear to be more or less ports
from BREW-based ”"dumb phones”, where the application environment is more
tightly controlled by code signing requirements. The Windows Mobile operating
environment is significantly different in this respect, however.

Additionally, the author would submit that, from the perspective of attempt-
ing to safeguard users from unauthorized harvesting of their location data (a
key reason cited by Verizon Wireless with respect to the certification process
needed for an application to become approved for location-aware functionality),
a hardware switch to enable or disable the GPS hardware on the device would
be a far better investment. In fact, the xv6800 already possesses a hardware
switch for 802.11 functionality; if this was instead changed to enable or disable
the gpsOne chipset in future smartphone designs, users could be assured that
their location information would be truly secure.

7 Debugging and Development Challenges on
Windows Mobile and the xv6800

Windows Mobile has a severely reduced set of standard debugging tools as
compared to the typically highly rich debugging environment available on most
Windows-derived systems. This greatly complicated the process of understand-
ing the underlying implementation details of the GPS lockdown system.

The author had access to two debuggers that could be used on the xv6800 at
the time of this writing: the Visual Studio 2005 debugger, and the IDA Pro
5.1 debugger. Both programs have serious issues in and of their own respective
rights.

Unfortunately, there does not appear to be any support for WinDbg, the au-
thor’s preferred debugging tool, when using Windows CE-based systems, such
as Windows Mobile. Although WinDbg can open ARM dump files (and ARM
PE images as a dump file), and can disassemble ARM instructions, there is no

17

transport to connect it to a live process on an ARM system.

The relatively immature state of debugging tools for the Windows Mobile plat-
form was a significant time consumer in the undertaking of this project.

7.1 Limitations of the Visual Studio Debugger

Visual Studio 2005 has integrated support for debugging Windows Mobile-based
applications. However, this support is riddled with bugs, and the quality of
the debugging experience rapidly diminishes if one does not have symbols and
binaries for all images in the process being debugged present on the debugger
machine. In particular, the Visual Studio 2005 debugger seems to be unable
to disassemble at any location other than the current pc register value without
having symbols for the containing binary available. (In the author’s experience,
attempting such a feat will fail with a complaint that no code exists at the
desired address.)

Additionally, there seems to be no support for export symbols on the Windows
Mobile debugger component of Visual Studio 2005. This, coupled with the
lack of freely-targetable disassembly support, often made it difficult to identify
standard API calls from the debugger. The author recommends falling back to
static disassembly whenever possible, as available static disassembly tools, such
as IDA Pro 5.1 Advanced or WinDbg provide a superior user experience.

7.2 Limitations of the IDA Pro 5.1 Debugger

Although IDA Pro 5.1 supports debugging of Windows Mobile-based programs,
the debugger has several limitations that made it unfortunately less practical
than the Visual Studio 2005 debugger. Foremost, it would appear that the
debugger does not support suspending and breaking into a Windows Mobile
target without the Windows Mobile target voluntarily breaking in (such as by
hitting a previously defined breakpoint).

In addition, the default security policy configuration on the device needed to be
modified in order to enable the debugger to connect at all (see note[3]).

7.3 Replacing a Firmware-baked Execute-in-place Module

Windows Mobile supports the concept of an execute in place (or XIP) module.
Such an executable image is stored split up into PE subsections on disk (and does
not contain a full image header). XIP modules are "baked” into the firmware
image, and cannot be overwritten without flashing the OS firmware on the

18

device. Conversely, it is not possible to simply copy an XIP module off of the
device and on to a conventional storage medium.

The advantage of XIP ”baked” modules comes into play when one considers the
limited amount of RAM available on a typical Windows Mobile device. XIP
modules are pre-relocated to a guaranteed available base address, and do not
require any runtime alterations to their backing memory when mapped. As a
result, XIP modules can be backed entirely by ROM and not RAM, decreasing
the (scarce) RAM that must be devoted to holding executable code.

It is possible to supersede an XIP ”baked” module without flashing the OS
image on the xv6800, however. This involves a rather convoluted procedure,
which amounts to the following steps, for a given XIP module residing in a
particular directory:

e First, rename the replacement module such that it has a filename which
does not conflict with any files present in the directory containing the XIP
module to supersede.

e Next, copy the renamed replacement module into the directory containing
the desired XIP module to supersede.

e Finally, rename the replacement module to have the same filename as the
desired XIP module.

Deleting the filename associated with the superseded XIP module will revert
the device back to the ROM-supplied XIP module. This property proves bene-
ficial in that it becomes easy to revert back to stock operating system-supplied
modules after temporarily superseding them.

7.4 Import Address Table Hooking Limitations

One avenue considered during the development of the replacement gpsapi.dll
module was to hook the import address tables (IATs) of programs utilizing
gpsapi.dll.

Unfortunately, import table hooking is a significantly more complicated affair
on Windows Mobile-based platforms than on standard Windows. The image
headers for a loaded image are discarded after the image has been mapped, and
the IAT itself is often relocated to be non-contiguous with the rest of the image.

This relocation is possible as there appears to be an implicit restriction that all
references to an TAT address on ARM PE images must indirect through a global
variable that contains the absolute address of the desired AT address. As a
result, there are no relative references to the IAT, and thus absolute address
references may be fixed up via the aid of relocation information. It is not clear

19

to the author what the purpose for this relocation of the IAT outside the normal
image confines serves on Windows Mobile for non-XIP modules that are loaded
into device RAM.

Furthermore, the HMODULE of an image does not equate to its load base
address on Windows Mobile. One can retrieve the real load base address of
a module on Windows Mobile via the GetModuleInformation API. This is a
significant departure from standard Windows.

Due to these limitations, the author elected not to pursue IAT hooking for the
purposes of the GPS unlocking project. Although there is code publicly available
to cope with the relocation of an image’s IAT, it appears to be dependent on
kernel data structures that the author did not have a conveniently available and
accurate definition for these structures corresponding to the Windows Mobile
kernel shipping on the xv6800.

8 Conclusion

Locking down the gpsOne hardware on the xv6800 such that it can only be uti-
lized by Verizon Wireless certified and approved applications can be seen in two
lights. One could consider such actions an anti-competitive move, designed to
lock out third party programs from having the opportunity to compete with VZ
Navigator. However, such a reasoning is fairly questionable, given that other
carriers in the United States (particularly GSM-based carriers) typically fully
support third party GPS-enabled applications on their devices. As consumers
expect more full-featured and advanced devices, locking down devices to only
carrier-approved functionality is becoming an increasingly large competitive lia-
bility for companies seeking to differentiate their networks and devices in today’s
saturated mobile phone markets.

Furthermore, Verizon Wireless’s currently shipping location-enabled application
for the xv6800, VZ Navigator, remains competitive (by virtue of features such as
turn-by-turn voice navigation, traffic awareness, and automatic re-routing) even
if the built-in GPS hardware on the xv6800 were to be unlocked for general-
purpose use. Freely available navigation programs lack these features, and com-
mercial applications are based off of a different pricing model than the periodic
monthly fee model used by VZ Navigator at the time of this article’s writing.

A more reasonable (although perhaps misguided) rationale for locking down
the gpsOne hardware is to protect users from having their location harvested
or tracked by malicious programs. Unfortunately, the relatively open nature of
Windows Mobile 6, and a lack of particularly effective privilege-level isolation
on Windows Mobile 6 after any unsigned code is permitted to run both con-
spire to greatly diminish the effectiveness of the protection schemes that are
implemented on the xv6800.

20

Whether this is a legitimate concern or not remains, of course, up for debate, but
it is clear that the lockdown system as present on the xv6800 is not particularly
effective against blocking access to un-approved third party applications.

Future releases of Windows Mobile claim support for a much more effective priv-
ilege isolation model that may provide true security from unprivileged, malicious
programs. However, in currently shipping devices, the operating system cannot
be relied upon to provide this protection. Relying on security through obscurity
to implement lockdown and protection schemes may then seem attractive, but
such mechanisms rarely provide true security.

As mobile phone advance to becoming more and more powerful devices, in
effect becoming small general-purpose computers, privacy and security concerns
begin to gain greater relevance. With the capability to record a user’s location
and audio and environment (via built-in microphones and cameras present on
virtually all modern-day phones), there arises the chance for a serious privacy
breeches, especially given modern day smartphones have historically not seen
the more vigorous level of security review that is slowly becoming more common-
place on general purpose computers.

One simple and elegant potential solution to these privacy risks is to simply
provide hardware switches to disable sensitive components, such as cameras or
embedded GPS hardware. Keeping in mind with this philosophy, the author
would encourage Verizon Wireless to fully open up their devices, and defer to
simple and secure methods to allow users to manage their sensitive information,
such as physical hardware switches.

References

[1] Verizon Wireless. Commercial Location Based Services. http://www.
vzwdevelopers.com/aims/public/menu/1bs/LBSLanding. jsp; accessed
October 10, 2008

[2] Verizon Wireless. LBS Application Questions ("What can I do to en-
sure that my application is accepted, and to ensure a smooth certifi-
cation process?”). http://www.vzwdevelopers.com/aims/public/menu/
1bs/LBSFAQ. jsp#LBSAppQues7; accessed October 10, 2008

[3] Daniel lvarez. Debugging ~ Windows Mobile 6 Applica-
tions with IDA. http://dani.foroselectronica.es/
debugging-windows-mobile-6-applications-with-ida-69/; accessed
October 10, 2008

[4] Microsoft. GPS Intermediate Driver Reference. http://msdn.microsoft.
com/en-us/library/ms850332.aspx; accessed October 10, 2008

21

http://www.vzwdevelopers.com/aims/public/menu/lbs/LBSLanding.jsp
http://www.vzwdevelopers.com/aims/public/menu/lbs/LBSLanding.jsp
http://www.vzwdevelopers.com/aims/public/menu/lbs/LBSFAQ.jsp#LBSAppQues7
http://www.vzwdevelopers.com/aims/public/menu/lbs/LBSFAQ.jsp#LBSAppQues7
http://dani.foroselectronica.es/debugging-windows-mobile-6-applications-with-ida-69/
http://dani.foroselectronica.es/debugging-windows-mobile-6-applications-with-ida-69/
http://msdn.microsoft.com/en-us/library/ms850332.aspx
http://msdn.microsoft.com/en-us/library/ms850332.aspx

[5]

Microsoft. GPSOpenDevice. http://msdn.microsoft.com/en-us/
library/bb202113.aspx; accessed October 10, 2008

Microsoft. GPSGetPosition. http://msdn.microsoft.com/en-us/
library/bb202050.aspx; accessed October 10, 2008

Verizon Wireless. LBS Application Questions (”Can the user change
their privacy settings?”). http://www.vzwdevelopers.com/aims/public/
menu/1bs/LBSFAQ. jsp#GenQues16; accessed October 10, 2008

Microsoft. GetModuleFileName Function (Windows). http://msdn.
microsoft.com/en-us/library/ms683197 (VS.85) .aspx; accessed Octo-
ber 10, 2008

Microsoft. CryptImportKey Function (Windows). http://msdn.
microsoft.com/en-us/library/aa380207 (VS.85) .aspx; accessed
October 11, 2008

Microsoft. Example C program: Imprtoing a Plaintext Key (Win-
dows). http://msdn.microsoft.com/en-us/library/aa382383(VS.85)
.aspx; accessed October 11, 2008

22

http://msdn.microsoft.com/en-us/library/bb202113.aspx
http://msdn.microsoft.com/en-us/library/bb202113.aspx
http://msdn.microsoft.com/en-us/library/bb202050.aspx
http://msdn.microsoft.com/en-us/library/bb202050.aspx
http://www.vzwdevelopers.com/aims/public/menu/lbs/LBSFAQ.jsp#GenQues16
http://www.vzwdevelopers.com/aims/public/menu/lbs/LBSFAQ.jsp#GenQues16
http://msdn.microsoft.com/en-us/library/ms683197(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms683197(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa380207(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa380207(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa382383(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa382383(VS.85).aspx

	Foreword
	Introduction
	Overview of Protection Mechanisms
	Firmware-based Protection Mechanisms
	Application Authorization via Challenge-response
	Location Information Encryption
	VZ Navigator (Application-level) Protection Mechanisms

	Opening gpsOne on the xv6800 to Third-party Applications
	Examining gpsOne Driver Interactions
	Implementing a Custom oemgpsOne.dll client
	Multiplexing GPS Across Multiple Applications
	Caveats

	Bugs in the Verizon Wireless xv6800 gpsOne Lock Down Logic
	Thread Safety Issues
	API Mis-use

	Suggested Countermeasures
	Debugging and Development Challenges on Windows Mobile and the xv6800
	Limitations of the Visual Studio Debugger
	Limitations of the IDA Pro 5.1 Debugger
	Replacing a Firmware-baked Execute-in-place Module
	Import Address Table Hooking Limitations

	Conclusion

