
Analyzing local privilege escalations in
win32k

10/2008

mxatone
mxatone@gmail.com

Contents

1 Foreword 2

2 Introduction 2

3 Win32k design 3
3.1 General security implementation 3
3.2 KeUsermodeCallback utilization 5

4 Discovery and exploitation 7
4.1 DDE Kernel pool overflow . 7

4.1.1 Vulnerability details . 7
4.1.2 Pool overflow exploitation 9
4.1.3 Delayed free pool overflow on Windows Vista 11

4.2 NtUserfnOUTSTRING kernel overwrite vulnerability 13
4.2.1 Evading ProbeForWrite function 13
4.2.2 Vulnerability details . 13

4.3 LoadMenu handle table corruption 15
4.3.1 Handle table . 15
4.3.2 Vulnerability details . 16

5 GUI architecture protection 17

6 Conclusion 18

1

1 Foreword

Abstract: This paper analyzes three vulnerabilities that were found in win32k.sys
that allow kernel-mode code execution. The win32k.sys driver is a major com-
ponent of the GUI subsystem in the Windows operating system. These vulnera-
bilities have been reported by the author and patched in MS08-025[1]. The first
vulnerability is a kernel pool overflow with an old communication mechanism
called the Dynamic Data Exchange (DDE) protocol. The second vulnerability
involves improper use of the ProbeForWrite function within string management
functions. The third vulnerability concerns how win32k handles system menu
functions. Their discovery and exploitation are covered.

2 Introduction

The design of modern operating systems provides a separation of privileges
between processes. This design restricts a non-privileged user from directly
affecting processes they do not have access to. This enforcement relies on both
hardware and software features. The hardware features protect devices against
unknown operations. A secure environment provides only necessary rights by
filtering program interaction within the overall system. This control increases
provided interfaces and then security risks. Abusing operating system design or
implementation flaws in order to elevate a program’s rights is called a privilege
escalation.

During the past few years, userland code and protection had been ameliorated.
The amelioration of operating system understanding has made abnormal be-
haviour detection easier. The exploitation of classical weakness is harder than
it was. Nowadays, local exploitation directly targets the kernel. Kernel local
privilege escalation brings up new exploitation methods and most of them are
certainly still undiscovered. Even if the Windows kernel is highly protected
against known attack vectors, the operating system itself has a lot of different
drivers that contribute to its overall attack surface.

On Windows, the graphical user interface (GUI) is divided into both kernel-
mode and user-mode components. The win32k.sys driver handles user-mode
requests for graphic rendering and window management. It also redirects Di-
rectX calls on to the appropriate driver. For local privilege escalation, win32k
represents an interesting target as it exists on all versions of Windows and some
features have existed for years without modifications.

This article presents the author’s work on analyzing the win32k driver to find
and report vulnerabilities that were addressed in Microsoft bulletin MS08-025
[1]. Even if the patch adds an overall protection layer, it concerns three re-
ported vulnerabilities on different parts of the driver. The Windows graphics

2

stack is very complex and this article will focus on describing some of win32k’s
organization and functionalities. Any reader who is interested in this topic is
encouraged to look at MSDN documentation for additional information[2].

The structure of this paper is as follows. In chapter 3, the win32k driver archi-
tecture basics will be presented with a focus on vulnerable contexts. Chapter
4 will detail how each of the three vulnerabilities was discovered and exploited.
Finally, chapter 5 will discuss possible security improvements for the vulnerable
driver.

3 Win32k design

Windows is based on a graphical user interface and cannot work without it.
Only Windows Serer 2008 in server core mode uses a minimalist user interface
but share the exact same components that typical user interfaces. The win32k
driver is a critical component in the graphics stack exporting more than 600
functions. It extends the System Service Descriptor Table (SSDT) with an-
other table called (W32pServiceTable). This driver is not as big as the main
kernel module (ntoskrnl.exe) but its interaction with the user-mode is just as
important. The service table for win32k contains less than 300 functions de-
pending on the version of Windows. The win32k driver commonly transfers
control to user-mode with a user-mode callback system that will be explained
in this part. The interface between user-mode modules and kernel-mode drivers
has been built in order to facilitate window creation and management. This is a
critical feature of Windows which may explain why exactly the same functions
can be seen across multiple operating system versions.

3.1 General security implementation

The most important part of a driver in terms of security is how it validates user-
mode inputs. Each argument passed as a pointer must be a valid user-mode
address and be unchangeable to avoid race conditions. This validation is often
accomplished by comparing a provided address with an address near the base
of kernel memory using functions such as ProbeForRead and ProbeForWrite.
Input contained within pointers is also typically cached in local variables (cap-
turing). The Windows kernel design is very strict on this part. When you
look deeper into win32k’s functions, you will see that they do not follow the
same strict integrity verifications made by the kernel. For example, consider
the following check made by the Windows kernel (translated to C):

NTSTATUS NTAPI NtQueryInformationPort(

HANDLE PortHandle,

PORT_INFORMATION_CLASS PortInformationClass,

3

PVOID PortInformation,

ULONG PortInformationLength,

PULONG ReturnLength

)

[...] // Prepare local variables

if (AccesMode != KernelMode)

{

try {

// Check submitted address - if incorrect, raise an exception

ProbeForWrite(PortInformation, PortInformationLength, 4);

if (ReturnLength != NULL)

{

if (ReturnLength > MmUserProbeAddress)

*MmUserProbeAddress = 0; // raise exception

*ReturnLength = 0;

}

} except(1) { // Catch exceptions

return exception_code;

}

}

[...] // Perform actions

We can see that the arguments are tested in a very simple way before doing
anything else. The ReturnLength field implements its own verification which
relies directly on MmUserProbeAddress. This variable marks the separation
between user-mode and kernel-mode address spaces. In case of an invalid ad-
dress, an exception is raised by writting in this variable which is read-only. The
ProbeForRead and ProbeForWrite functions verifications routines raised an ex-
ception if an incorrect address is encounter. However, the win32k driver does
not allows follow this pattern:

BOOL NtUserSystemParametersInfo(

UINT uiAction,

UINT uiParam,

PVOID pvParam,

UINT fWinIni)

[...] // Prepare local variables

switch(uiAction)

{

case SPI_1:

// Custom checks

break;

case SPI_2:

size = sizeof(Stuct2);

goto prob_read;

case SPI_3:

4

size = sizeof(Stuct3);

goto prob_read;

case SPI_4:

size = sizeof(Stuct4);

goto prob_read;

case SPI_5:

size = sizeof(Stuct5);

goto prob_read;

case SPI_6:

size = sizeof(Struct6);

prob_read:

ProbeForRead(pvParam, size, 4)

[...]

}

[...] // Perform actions

This function is very complex and this example presents only a small part of
the checks. Some parameters need only classic verification while others imple-
ment their own. This elaborate code can create confusion which improves the
chances of a local privilege escalation. The issues comes from unordinary kernel
function that handles multiple features at the same time without implementing
a standardized function prototype. The Windows kernel solved this issue on
NtSet* and NtQuery* functions by using two simple arguments. The first ar-
gument is a classical buffer and the second argument is its size. For example, the
NtQueryInformationPort function will check the buffer in a generic way and
then only verify that the size correspond to the specified feature. The win32k
design implementation ameliorates GUI development but make code review very
difficult.

3.2 KeUsermodeCallback utilization

Typical interaction between user-mode and kernel-mode is done via syscalls. A
user-mode module may request that the kernel execute an action and return
needed information. The win32k driver has a callback system to do the exact
opposite. The KeUsermodeCallback function calls a user-mode function from
kernel-mode. This function is undocumented and provided by the kernel module
in a secure way in order to switch into user-mode properly[4]. The win32k driver
uses this functionality for common task such as loading a dll module for event
catching or retrieving information. The prototype of this function:

NTSTATUS KeUserModeCallback (

IN ULONG ApiNumber,

IN PVOID InputBuffer,

IN ULONG InputLength,

OUT PVOID *OutputBuffer,

5

IN PULONG OutputLength

);

Microsoft did not make a system to retrieve arbitrary user-mode function ad-
dresses from the kernel. Instead, the win32k driver has a set of functions that
it needs to call. This list is kept in an undocumented function table in the
Process Environment Block (PEB) structure for each process. The ApiNumber
argument refers to an index into this table.

In order to return on user-mode, KeUserModeCallback retrieves the user-mode
stack address from saved user-mode context stored in a thread’s KTRAP FRAME
structure. It saves current stack level and uses ProbeForWrite to check if
there is enough room for the input buffer. The Inputbuffer argument is then
copied into the user stack and an argument list is created for the function being
called. The KiCallUserMode function prepares the return in user-mode by
saving important information in the kernel stack. This callback system works
as a normal syscall exit procedure except than stack level and eip register has
been changed. The callback start in the KiUserCallbackDispatcher function.

VOID KiUserCallbackDispatcher(

IN ULONG ApiNumber,

IN PVOID InputBuffer,

IN ULONG InputLength

);

The user-mode function KiUserCallbackDispatcher receives an argument list
which contains ApiNumber, InputBuffer, and InputLength. It does appropri-
ate function dispatching using the PEB dispatch table. When it is finished the
routine invokes interrupt 0x2b to transfer control back to kernel-mode. In turn,
the kernel inspects three registers:

• ecx contains a user-mode pointer for OutputBuffer

• edx is for OutputLength

• eax contains return status.

The KiCallbackReturn kernel-mode function handles the 0x2B interrupt and
passes important registers as argument for the NtCallbackReturn function.
Everything is cleaned using saved information within the kernel stack and it
transfers to previously called KeUsermodeCallback function with proper output
argument sets.

The reader should notice that nothing is done to check ouput data. Each kernel
function that uses the user-mode callback system is responsible for verifying
output data. An attacker can simply hook the KiUserCallbackDispatcher

6

function and filter requests to control output pointer, size and data. This user-
mode call can represent an important issue if it was not verified as seriously as
system call functions.

4 Discovery and exploitation

The win32k driver was patched by the MS08-025 bulletin [1]. This bulletin did
not disclose any details about the issues but it did talk about a vulnerability
which allows privilege elevation though invalid kernel checks. This patch in-
creases the overall driver security by adding multiple verifications. In fact, this
patch was due to three different reported vulnerabilities. The following sections
explain how these vulnerabilities were discovered and exploited.

4.1 DDE Kernel pool overflow

The Dynamic Data Exchange (DDE) protocol is a GUI integrated message sys-
tem [5]. Despite Windows operating system has already many different message
mechanisms, this one share data across process by sharing GUI handles and
memory section. This feature is quite old but still supported by Microsoft ap-
plication as Internet explorer [6] and used in application firewalls bypass tech-
nique. During author’s research on win32k driver, he investigated how the
KeUsermodeCallback function was used. As described previously, this function
does not verify directly output data. This lack of validation is what leads to
this vulnerability.

4.1.1 Vulnerability details

The vulnerability exists in the xxxClientCopyDDEIn1 win32k function. It is
not called directly but it is used internally in the kernel when messages are
exchanged between processes using the DDE protocol. In this context, the
OutputBuffer verification is analyzed.

In xxxClientCopyDDEIn1 function:

lea eax, [ebp+OutputLength]

push eax

lea eax, [ebp+OutputBuffer]

push eax

push 8 ; InputLength

lea eax, [ebp+InputBuffer]

push eax

push 32h ; ApiNumber

call ds:__imp__KeUserModeCallback@20

mov esi, eax ; return < 0 (error ?)

7

call _EnterCrit@0

cmp esi, edi

jl loc_BF92C6D4

cmp [ebp+OutputLength], 0Ch ; Check output length

jnz loc_BF92C6D4

mov [ebp+ms_exc.disabled], edi ; = 0

mov edx, [ebp+OutputBuffer]

mov eax, _Win32UserProbeAddress

cmp edx, eax ; Check OutputBuffer address

jb short loc_BF92C5DC

[...]

loc_BF92C5DC:

mov ecx, [edx]

loc_BF92C5DE:

mov [ebp+var_func_return_value], ecx

or [ebp+ms_exc.disabled], 0FFFFFFFFh

push 2

pop esi

cmp ecx, esi ; first OutputBuffer ULONG must be 2

jnz loc_BF92C6D4

xor ebx, ebx

inc ebx

mov [ebp+ms_exc.disabled], ebx ; = 1

mov [ebp+ms_exc.disabled], esi ; = 2

mov ecx, [edx+8] ; OutputBuffer - user mode ptr

cmp ecx, eax ; Win32UserProbeAddress - check user mode ptr

jnb short loc_BF92C602

[...]

loc_BF92C602:

push 9

pop ecx

mov esi, eax

lea edi, [ebp+copy_output_data]

rep movsd

mov [ebp+ms_exc.disabled], ebx ; = 1

push 0

push ’EdsU’

mov ebx, [ebp+copy_output_data.copy1_size] ; we control this

mov eax, [ebp+copy_output_data.copy2_size] ; and this

lea eax, [eax+ebx+24h] ; integer overflow right here

push eax ; NumberOfBytes

call _HeavyAllocPool@12

mov [ebp+allocated_buffer], eax

test eax, eax

jz loc_BF92C6B6

mov ecx, [ebp+var_2C]

mov [ecx], eax ; save allocation addr

push 9

pop ecx

lea esi, [ebp+copy_output_data]

8

mov edi, eax

rep movsd ; Copy output data

test ebx, ebx

jz short loc_BF92C65A

mov ecx, ebx

mov esi, [ebp+copy_output_data.copy1_ptr]

lea edi, [eax+24h]

mov edx, ecx

shr ecx, 2

rep movsd ; copy copy1_ptr (with copy1_size)

mov ecx, edx

and ecx, 3

rep movsb

loc_BF92C65A:

mov ecx, [ebp+copy_output_data.copy2_size]

test ecx, ecx

jz short loc_BF92C676

mov esi, [ebp+copy_output_data.copy2_ptr]

lea edi, [ebx+eax+24h]

mov edx, ecx

shr ecx, 2

rep movsd movsd ; copy copy2_ptr (with copy2_size)

mov ecx, edx

and ecx, 3

rep movsb

The DDE copydata buffer contains two different buffers with their respective
sizes. These sizes are used to calculate the size of a buffer that is allocated.
However, appropriate checks are not made to detect if an integer overflow oc-
curs. An integer overflow exists when an arithmetic operation is done between
different integers that would go behind maximum integer value and then cre-
ate a lower integer[7]. As such, the allocated buffer may be smaller than each
buffer size which leads to a kernel pool overflow. The pool is the name used to
designated the Windows kernel heap.

4.1.2 Pool overflow exploitation

The key to exploiting this issue is more about how to exploit a kernel pool
overflow. Previous work has described the kernel pool system and exploitation[8]
[9]. This paper will focus on the exploiting the vulnerability being described.

The kernel pool can be thought of as a heap. Memory is allocated by the
ExAllocatePoolWithTag function and then freed using the ExFreePoolWithTag
function. Depending of memory size, a header chunk precedes memory data.
Exploiting a pool overflow involves replacing the next chunk header with a
crafted version. This header is available though ntoskrnl module symbols as:

typedef struct _POOL_HEADER

9

{

union

{

struct

{

USHORT PreviousSize : 9;

USHORT PoolIndex : 7;

USHORT BlockSize : 9;

USHORT PoolType : 7;

}

ULONG32 Ulong1;

}

union

{

struct _EPROCESS* ProcessBilled;

ULONG PoolTag;

struct

{

USHORT AllocatorBackTraceIndex;

USHORT PoolTagHash;

}

}

} POOL_HEADER, *POOL_HEADER; // sizeof(POOL_HEADER) == 8

Size fields are a multiple of 8 bytes as an allocated block will always be 8 byte
aligned1. The PoolIndex field is not important for our overflow and can be set
to 0. The PoolType field contains chunk state with multiple possible flags. The
busy flag changes between operating system version but free chunk always got
the PoolType field to zero.

During a pool overflow, the next chunk header is overwritten with malicious val-
ues. When the allocated block is freed, the ExFreePoolWithTag function will
look at the next block type. If the next block is free it is coalesced by unlink-
ing and merging it with current block. The LIST ENTRY structure links blocks
together and is adjacent to the POOL HEADER structure if current chunk is free.
The unlinking procedure is exactly the same as the behavior of the user-mode
heap except that no safe unlinking check is done. This procedure is repeated
for previous block. Many papers already explained unlinking exploitation which
allows writing 4 bytes to a controlled address. However, this attack breaks a
pool’s internal linked list and exploitation must take this into consideration. As
such, it is necessary to restore the pool’s list integrity to prevent the system
from crashing.

There are a number of different addresses that may be overwritten such as di-
rectly modifying code or overwriting the contents of a function pointer. In local
kernel exploitation, the target address should be uncommonly unused by the
kernel to prevent operating system instability. In his paper, Rubén Santamarta
used a function pointer accessible though an exported kernel variable named

1Windows 2000 pool architecture is different. Memory blocks are aligned on 16 bytes and
flags type is a simple UCHAR (no bitfields).

10

HalDispatchTable[10]. This function pointer is used by KeQueryIntervalProfile
which is called by the system call NtQueryIntervalProfile. Overwriting the
function pointer at HalDispatchTable+4 does not break system behavior as this
function is unsupported2 in default configuration. For our exploitation, this is
the best choice as it is easy to launch and target.

The exploitation code for this this particular vulnerability should produce this
fake chunk:

Fake next pool chunk header for Windows XP / 2003:

PreviousSize = (copy1_size + sizeof(POOL_HEADER)) / 8

PoolIndex = 0

BlockSize = (sizeof(POOL_HEADER) + 8) / 8

PoolType = 0 // Free chunk

Flink = Execute address - 4 // in userland - call +4 address

Blink = HalDispatchTable + 4 // in kernelland

Modification for Windows 2000 support:

PreviousSize = (copy1_size + sizeof(POOL_HEADER)) / 16

BlockSize = (sizeof(POOL_HEADER) + 15) / 16

The Flink field points on a user-mode address less 4 that will be called from the
kernel address space once the Blink function pointer would be replaced. When
called by the kernel, the user-mode address will execute at ring0 and is able to
modify operating system behavior.

In this specific vulnerability, to avoid a crash and control copied data in target
memory buffer, copy2 ptr should point to a NO ACCESS memory page. When
the copy occurs, an exception will be raised which will be caught by a try/except
block in the function. For this exception, the allocated buffers are freed. Copied
memory size would be controlled by copy1 size field and integer overflow will
be done by copy2 size field. This configuration allows to overflow only the
necessary part.

4.1.3 Delayed free pool overflow on Windows Vista

The allocation pool type in win32k on Windows Vista uses an undocumented
DELAY FREE flag. With this flag, the ExFreePoolWithTag function does not
liberate a memory block but instead pushes it into a deferred free list. If the
kernel needs more memory or the deferred free list is full it will pop an entry off
the list and liberate it through normal means. This can cause problems because
the actual free may not occur until many minutes later in a potentially different

2A clean privilege escalation code should consider restoring overwritten data.

11

process context. Due to this problem, both Flink and Blink pointers must be
in the kernel mode address space.

The HalDispatchTable overwrite technique can be reused to support this con-
figuration. The KeQueryIntervalProfile function disassembly shows how the
function pointer is used. This context is always the same across Windows ver-
sions.

mov [ebp+var_C], eax

lea eax, [ebp+arg_0]

push eax

lea eax, [ebp+var_C]

push eax

push 0Ch

push 1

call off_47503C ; xHalQuerySystemInformation(x,x,x,x)

The first and the second arguments points into user-mode in the NULL page.
This page can be allocated using the NtAllocateVirtualMemory function with
an unaligned address in NULL page. The kernel function will realign this pointer
on lower page and allocate this page3. In order to exploit this context, a stub
of machine code must be found which returns on first argument and where next
4 bytes can be overwritten. This is the case of function epilogues as for wcslen
function:

.text:00463B4C sub eax, [ebp+arg_0]

.text:00463B4F sar eax, 1

.text:00463B51 dec eax

.text:00463B52 pop ebp

.text:00463B53 retn

.text:00463B54 db 0CCh ; alignement padding

.text:00463B55 db 0CCh

.text:00463B56 db 0CCh

.text:00463B57 db 0CCh

.text:00463B58 db 0CCh

In this example, the 00463B51h address fits our needs. The pop instruction pass
the return address and the retn instruction return in 1. The alert reader noticed
that the selected address start at dec instruction. The unlinking procedure un-
links the next 4 bytes and the 00463B54h address has 5 padding bytes. Without
this padding, overwriting unknown assembly could lead to a crash compromis-
ing the exploitation. The location of this target address changes depending on
operating system version but this type of context can be found using pattern
matching. On Windows Vista, the vulnerability exploitation loops calling the
NtQueryIntervalProfile function until deferred free occurs and exploitation is
successful. This loop is mandatory as pool internal structure must be corrected.

3This page is also used in kernel NULL dereference vulnerabilities.

12

4.2 NtUserfnOUTSTRING kernel overwrite vulnerability

The NtUserfnOUTSTRING function is accessible through an internal table used
by NtUserMessageCall exported function. Functions starting by ”NtUserfn”
can be called with SendMessage function exported by user32.dll module. For
this function the WM GETTEXT window message is necessary. Notice that in some
cases a direct call is needed for successful exploitation. Verifications made by
SendMessage function are trivial as it is used for different functions but should
be considered. The MSDN website describes SendMessage utilization [3].

4.2.1 Evading ProbeForWrite function

The ProbeForWrite function verifies that an address range resides in the user-
mode address space and is writable. If not, it will raise an exception that can
be caught by a try / except code block. This function is used by a lot by
drivers which deal with user-mode inputs. THe following is the start of the
ProbeForWrite function assembly:

void __stdcall ProbeForWrite(PVOID Address, SIZE_T Length, ULONG Alignment)

mov edi, edi

push ebp

mov ebp, esp

mov eax, [ebp+Length]

test eax, eax

jz short loc_exit ; Length == 0

[...]

loc_exit:

pop ebp

retn 0Ch

This short assembly dump underlines one way to evade ProbeForWrite function.
If Length argument is zero, no verification is done on Address argument. It
means that Microsoft considers that a zero length input do not require address
to point in userland. Microsoft made a blog post on MS08-025[12] and why
ProbeForWrite was not modified as expected. Microsoft compatibility concern
is understandable but at least ProbeForWrite documentation should be updated
for this case.

4.2.2 Vulnerability details

This vulnerability touches not only this function but a whole class of string
management functions. Some functions make sure that length argument is not

13

zero before its modification. Others do not even check the length argument. A
proof of concept has been made on this vulnerability by Rubén Santamarta [11].

The NtUserfnOUTSTRING function vulnerability evades the ProbeForWrite func-
tion and overwrites 1 or 2 bytes of kernel memory. This function disassembly is
below:

In NtUserfnOUTSTRING (WM_GETTEXT)

xor ebx, ebx

inc ebx

push ebx ; Alignment = 1

and eax, ecx ; eax = our size | ecx = 0x7FFFFFFF

push eax ; If our size is 0x80000000 then

; Length is zero (avoid any check)

push esi ; Our kernel address

call ds:__imp__ProbeForWrite@12

or [ebp+var_4], 0FFFFFFFFh

mov eax, [ebp+arg_14]

add eax, 6

and eax, 1Fh

push [ebp+arg_10]

lea ecx, [ebp+var_24]

push ecx

push [ebp+arg_8]

push [ebp+arg_4]

push [ebp+arg_0]

mov ecx, _gpsi

call dword ptr [ecx+eax*4+0Ch] ; Call appropriate sub function

mov edi, eax

test edi, edi

jz loc_BF86A623 ; Something goes wrong

[...]

loc_BF86A623:

cmp [ebp+arg_8], eax ; Submit size was 0 ? (no)

jz loc_BF86A6D1

[...]

push [ebp+arg_18] ; Wide or Multibyte mode

push esi ; Our address

call _NullTerminateString@8 ; <== 0 byte or short overwriting

In this function, a high size (0x80000000) can bypass ProbeForWrite function
verification. After this verification, it calls a function based on win32k internal
function pointer table. This function depends of the calling context. If it is in
the same thread that submitted handle it will go directly on retrieval function,
otherwise it can be cached by another function waiting for proprietary thread
handling this request. This assembly sample highlights null byte overwriting
if other functions failed. The null byte assures that a valid string is returned.
This is not the only way to overwrite memory. By using an edit box, we could

14

overwrite kernel memory with a custom string but the first way fit the need.

The exploitation is trivial and will not be detailed in this part. The first vul-
nerability already exposed a target address and the way to allocate the NULL
page which were used to demonstrate this vulnerability.

4.3 LoadMenu handle table corruption

The win32k driver implements its own handle mechanism. This system shares
a handle table between user-mode and kernel-mode. This table is mapped into
the user mode address space as read-only and is modified in kernel mode address
space. The MS07-017 bulletin found by Cesar Cerrudo during Month of Kernel
Bugs (MOKB) [13] describes this table and how its modification could permit
kernel code execution. This chapter addresses another vulnerability based on
GDI handle shared table entry misuse.

4.3.1 Handle table

In the GUI architecture, an handle contains different information as an index
in the shared handle table and the object type. The handle table is an array of
the undocumented HANDLE TABLE ENTRY structure.

typedef struct _HANDLE_TABLE_ENTRY

{

union

{

PVOID pKernelObject;

ULONG NextFreeEntryIndex; // Used on free state

};

WORD ProcessID;

WORD nCount;

WORD nHandleUpper;

BYTE nType;

BYTE nFlag;

PVOID pUserInfo;

} HANDLE_TABLE_ENTRY; // sizeof(HANDLE_TABLE_ENTRY) == 12

The nType field defines the table entry type. A free entry has the type zero
and nFlag field which defines if it is destroyed or currently in destroy pro-
cedure. Normal handle verification routines check this value before getting
pKernelInfo field which points to the associated kernel handle. In a free entry,
the NextFreeEntryIndex field contains the next free entry index which is not
a pointer but a simple unsigned long value.

The GUI object structure depends of object type but starts with the same
structure which contains corresponding index in the shared handle table. This

15

architecture lies on both elements. It switches between each table entry and
kernel object depending of needs. A security issue exists if the handle table is
not used as it should.

4.3.2 Vulnerability details

The vulnerability itself exists in win32k’s xxxClientLoadMenu function which
does not correctly validate a handle index. This function is called by the
GetSystemMenu function and returns to user-mode using the KeUsermodeCallback
function to retrieve a handle index. The following assembly shows how this value
is used.

and eax, 0FFFFh ; eax is controlled

lea eax, [eax+eax*2] ; index * 3

mov ecx, gSharedTable

mov edi, [ecx+eax*4] ; base + (index * 12)

This assembly sample uses an unchecked handle index and return pKernelObject
field value of target entry. This pointer is returned by the xxxClientLoadMenu
function. Proper verification are not made which permit deleted handle manip-
ulation. A deleted handle has its NextFreeEntryIndex field set between 0x1
and 0x3FFF. The return value will be in first memory pages.

A system menu is linked to a window object. This window object is desig-
nated by an handle passed as an argument of the GetSystemMenu function.
The spmenuSys field of the window object is set with the returned value of the
xxxClientLoadMenu function. In this specific context, the spmenuSys value is
hardly predictable inside the NULL page. During thread exit, the Window lib-
eration will look at spmenuSys object and using its index in the shared table,
toggle nFlag field state to destroyed and nType as free. In the case the NULL
page is filled with zero value, it will destroy the first entry in the GDI shared
handle table.

Exploitation is achieved by reusing vulnerable functions once the first entry has
been destroyed. The GetSystemMenu function locks and unlocks the GDI shared
handle table entry linked with kernel object returned by the xxxClientLoadMenu
function. If the entry flag is destroyed the unlock function calls the type destroy
callback. For the first entry, the flag has been set to destroyed. There is no call-
back for this type as it is not supposed to be unlocked. The unlock function will
call zero which allows kernel code execution. This specific handle management
architecture stay undocumented. The purpose of liberation callback inside the
thread unlocking procedure is unusual.

Exploitation steps:

• Allocate NULL address

16

• Exploitation loop - second iteration trigger call zero:

– Create a dialog

– Set NULL page data to zero

– Set a relative jmp at zero address

– Create a menu graphic handle (or another type).

– Destroy this menu handle

– Call GetSystemMenu

– Intercept user callback and return destroyed menu handle index (mask
0x3fff of the handle)

– Exit this thread - set zero handle entry as free and destroyed.

There are multiple ways to exploit this vulnerability. The author truly believes
that exploiting the locking procedure could be used on handle leak vulnera-
bilities as it was for this vulnerability. Indeed this vulnerability exploitation
stays complex and unusual. This specific context made exploitation even more
interesting.

5 GUI architecture protection

Create a safe software is a hard task that is definitely harder than find vulnera-
bilities. This work is even harder when it concerns old components which must
respect compatibility rules. This article does not blame Microsoft for those
vulnerabilities; it presents global issues on Windows architecture. In Windows
Vista, Microsoft starts securing its operating system environment. The Win-
dows Vista base code is definitely safer than it was. Some kernel components
as the win32k driver are not safe enough and should be considered as a priority
in local operating system security.

The GUI architecture does not respect security basics. Starting from scratch
would certainly be a good option if it was possible. The global organization of
this driver make security audits a mess. In the other hand, the Windows API
shows it responses developer needs. There is a big abstraction layer between
userland API and kernel functions. It can be use to rebuild the win32k driver
without breaking compatibility. The API must follow user needs and be as easy
as it can be. There is no reason that kernel driver exported function could not
be changed in a secure way. It represents an enormous work which would be
achieved only across operating system version. Nevertheless this is necessary.
This modification could also increase performance by reducing unneeded context
switching. There is no clever reason going in the kernel to ask userland a value
that will be returned to userland. The user-mode callback system does not fit
in a consistent GUI architecture.

17

Local exploitation techniques also highlight unsecure components as kernel pool
and how overwriting some function pointers allow kernel code execution. In the
past, the userland has been hardened as exploitation was too easy and third par-
ties software could permit compromising a computer. The kernel performance
is critical and adds verification routines and security measure could break this
advantage. The solution should be in operating system evolution which does
not restrict user experience. The hardware improvement does not forgive that
modern operating system requires more resources than before.

Software development follows fastest way except when a specific result is ex-
pected. A company does not search the better way but something that cost
less for almost the same result. Microsoft did not choose readiness by starting
Security Development Lifecycle (SDL) [14] and should continue in this way.

6 Conclusion

The Windows kernel components have unequal security verification level. The
main kernel module (ntoskrnl.exe) respects a standard verification dealing with
userland data. The win32k driver does not follow the same rules which creates
messy verification algorithms. This driver has an important interaction with
userland by different mechanism from usual syscall to userland callback system.
This architecture increase attack surface. The vulnerable parts do not concern
usual vulnerabilities but also internal mechanism as GUI handle system.

Chapter 4 exposed vulnerabilities discovery and exploitation. Local exploitation
has many different attack vectors. Nowadays, the exploitation is fast and sure,
it works at any attempts. The kernel exploitation is possible though different
techniques.

The win32k driver was not built with a secure design and now it becomes so
huge, with so many compatibility restrictions, that every release just implements
new features without changing anything else. Windows Vista introduces many
modifications but most of them are just automatic integer overflow checks. It
will solve many unknown issues but interaction between user-mode and kernel-
mode is hardly predictable. Vulnerabilities are not always a matter of proper
checks but also system interaction and custom context.

Implementing usual userland protections is not a good solution as kernel ex-
ploitation is larger than overflows. The win32k driver could change by using
userland abstract layer in order to keep compatibility. This choice is not the
easier as it asks more time and work. The patch evoked in this paper amelio-
rates a little bit win32k security as it goes deeper than reported vulnerabilities.
However the Windows Vista version of the win32k driver was concerned by two
vulnerabilities even if it was already more secure. Minor modifications do not
solve security issues. The overall kernel security has been discussed on different

18

paper about vulnerabilities but also rootkits. Everyone agree that operating
systems must evolve. Windows Seven could introduce a new right architecture
which secure critical component or just improve win32k driver security.

References

[1] Microsoft Corporation. Microsoft Security Bulletin MS08-025
http://www.microsoft.com/technet/security/Bulletin/MS08-025.
mspx

[2] Microsoft Corporation. Windows User Interface.
http://msdn.microsoft.com/en-us/library/ms632587(VS.85).aspx

[3] Microsoft Corporation. SendMessage function.
http://msdn.microsoft.com/en-us/library/ms644950.aspx

[4] ivanlef0u. You failed (blog entry about KeUsermodeCallback function in
French).
http://www.ivanlef0u.tuxfamily.org/?p=68

[5] Microsoft Corporation. About Dynamic Data Exchange.
http://msdn.microsoft.com/en-us/library/ms648774.aspx

[6] Microsoft Corporation. DDE Support in Internet Explorer Versions (still
supported in ie7).
http://support.microsoft.com/kb/160957

[7] Wikipedia. Integer overflow.
http://en.wikipedia.org/wiki/Integer overflow

[8] mxatone and ivanlef0u. Stealth hooking : Another way to subvert the Win-
dows kernel.
http://www.phrack.org/issues.html?issue=65&id=4#article

[9] Kostya Kortchinsky. Kernel pool exploitation (Syscan Hong Kong 2008).
http://www.syscan.org/hk/indexhk.html

[10] Rubén Santamarta. Exploiting common flaws in drivers.
http://www.reversemode.com/index.php?option=com
remository&Itemid=2&func=fileinfo&id=51

[11] Rubén Santamarta. Exploit for win32k!ntUserFnOUTSTRING (MS08-
25/n).
http://www.reversemode.com/index.php?option=com content&task=
view&id=50&Itemid=1

[12] Microsoft Corporation. MS08-025: Win32k vulnerabilities.
http://blogs.technet.com/swi/archive/2008/04/09/
ms08-025-win32k-vulnerabilities.aspx

19

http://www.microsoft.com/technet/security/Bulletin/MS08-025.mspx
http://www.microsoft.com/technet/security/Bulletin/MS08-025.mspx
http://msdn.microsoft.com/en-us/library/ms632587(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms644950.aspx
http://www.ivanlef0u.tuxfamily.org/?p=68
http://msdn.microsoft.com/en-us/library/ms648774.aspx
http://support.microsoft.com/kb/160957
http://en.wikipedia.org/wiki/Integer_overflow
http://www.phrack.org/issues.html?issue=65&id=4#article
http://www.syscan.org/hk/indexhk.html
http://www.reversemode.com/index.php?option=com_remository&Itemid=2&func=fileinfo&id=51
http://www.reversemode.com/index.php?option=com_remository&Itemid=2&func=fileinfo&id=51
http://www.reversemode.com/index.php?option=com_content&task=view&id=50&Itemid=1
http://www.reversemode.com/index.php?option=com_content&task=view&id=50&Itemid=1
http://blogs.technet.com/swi/archive/2008/04/09/ms08-025-win32k-vulnerabilities.aspx
http://blogs.technet.com/swi/archive/2008/04/09/ms08-025-win32k-vulnerabilities.aspx

[13] Cesar Cerrudo. Microsoft Windows kernel GDI local privilege escalation.
http://projects.info-pull.com/mokb/MOKB-06-11-2006.html

[14] Microsoft Corporation. Steve Lipner and Michael Howard. The Trustworthy
Computing Security Development Lifecycle
http://msdn.microsoft.com/en-us/library/ms995349.aspx

20

http://projects.info-pull.com/mokb/MOKB-06-11-2006.html
http://msdn.microsoft.com/en-us/library/ms995349.aspx

	Foreword
	Introduction
	Win32k design
	General security implementation
	KeUsermodeCallback utilization

	Discovery and exploitation
	DDE Kernel pool overflow
	Vulnerability details
	Pool overflow exploitation
	Delayed free pool overflow on Windows Vista

	NtUserfnOUTSTRING kernel overwrite vulnerability
	Evading ProbeForWrite function
	Vulnerability details

	LoadMenu handle table corruption
	Handle table
	Vulnerability details

	GUI architecture protection
	Conclusion

